http://hdl.handle.net/1893/3657
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Peer Review Status: | Refereed |
Title: | A Novel Neural Network Ensemble Architecture for Time Series Forecasting |
Author(s): | Gheyas, Iffat A Smith, Leslie |
Contact Email: | lss@cs.stir.ac.uk |
Keywords: | Time series forecasting Generalized regression neural networks Neural network ensemble Curse of dimensionality Dynamic nonlinear weighted voting Neural networks (Computer science) Data mining |
Issue Date: | Nov-2011 |
Date Deposited: | 24-Feb-2012 |
Citation: | Gheyas IA & Smith L (2011) A Novel Neural Network Ensemble Architecture for Time Series Forecasting. Neurocomputing, 74 (18), pp. 3855-3864. https://doi.org/10.1016/j.neucom.2011.08.005 |
Abstract: | We propose a novel homogeneous neural network ensemble approach called Generalized Regression Neural Network (GEFTS-GRNN) Ensemble for Forecasting Time Series, which is a concatenation of existing machine learning algorithms.GEFTS use a dynamic nonlinear weighting system wherein the outputs from several base-level GRNNs are combined using a combiner GRNN to produce the final output. We compare GEFTS with the 11 most used algorithms on 30 real datasets. The proposed algorithm appears to be more powerful than existing ones. Unlike conventional algorithms, GEFTS is effective in forecasting time series with seasonal patterns. |
DOI Link: | 10.1016/j.neucom.2011.08.005 |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
A Novel Neural Network.pdf | Fulltext - Published Version | 1.11 MB | Adobe PDF | Under Permanent Embargo Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.