Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/3657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGheyas, Iffat Aen_UK
dc.contributor.authorSmith, Leslieen_UK
dc.date.accessioned2014-11-05T00:13:21Z-
dc.date.available2014-11-05T00:13:21Zen_UK
dc.date.issued2011-11en_UK
dc.identifier.urihttp://hdl.handle.net/1893/3657-
dc.description.abstractWe propose a novel homogeneous neural network ensemble approach called Generalized Regression Neural Network (GEFTS-GRNN) Ensemble for Forecasting Time Series, which is a concatenation of existing machine learning algorithms.GEFTS use a dynamic nonlinear weighting system wherein the outputs from several base-level GRNNs are combined using a combiner GRNN to produce the final output. We compare GEFTS with the 11 most used algorithms on 30 real datasets. The proposed algorithm appears to be more powerful than existing ones. Unlike conventional algorithms, GEFTS is effective in forecasting time series with seasonal patterns.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationGheyas IA & Smith L (2011) A Novel Neural Network Ensemble Architecture for Time Series Forecasting. Neurocomputing, 74 (18), pp. 3855-3864. https://doi.org/10.1016/j.neucom.2011.08.005en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectTime series forecastingen_UK
dc.subjectGeneralized regression neural networksen_UK
dc.subjectNeural network ensembleen_UK
dc.subjectCurse of dimensionalityen_UK
dc.subjectDynamic nonlinear weighted votingen_UK
dc.subjectNeural networks (Computer science)en_UK
dc.subjectData miningen_UK
dc.titleA Novel Neural Network Ensemble Architecture for Time Series Forecastingen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[A Novel Neural Network.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.neucom.2011.08.005en_UK
dc.citation.jtitleNeurocomputingen_UK
dc.citation.issn0925-2312en_UK
dc.citation.volume74en_UK
dc.citation.issue18en_UK
dc.citation.spage3855en_UK
dc.citation.epage3864en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emaillss@cs.stir.ac.uken_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000296941200015en_UK
dc.identifier.scopusid2-s2.0-80053306318en_UK
dc.identifier.wtid829310en_UK
dc.contributor.orcid0000-0002-3716-8013en_UK
dcterms.dateAccepted2011-11-30en_UK
dc.date.filedepositdate2012-02-24en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGheyas, Iffat A|en_UK
local.rioxx.authorSmith, Leslie|0000-0002-3716-8013en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2999-12-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameA Novel Neural Network.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0925-2312en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
A Novel Neural Network.pdfFulltext - Published Version1.11 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.