Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36559
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFyvie, Martinen_UK
dc.contributor.authorMccall, Johnen_UK
dc.contributor.authorChristie, Leeen_UK
dc.contributor.authorBrownlee, Alexanderen_UK
dc.date.accessioned2024-12-07T01:14:22Z-
dc.date.available2024-12-07T01:14:22Z-
dc.date.issued2023-07-15en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36559-
dc.description.abstractIn the field of Explainable AI, population-based search metaheuristics are of growing interest as they become more widely used in critical applications. The ability to relate key information regarding algorithm behaviour and drivers of solution quality to an end-user is vital. This paper investigates a novel method of explanatory feature extraction based on analysis of the search trajectory and compares the results to those of sensitivity analysis using "Weighted Ranked Biased Overlap". We apply these techniques to search trajectories generated by a genetic algorithm as it solves a staff rostering problem. We show that there is a significant overlap between these two explainability methods when identifying subsets of rostered workers whose allocations are responsible for large portions of fitness change in an optimization run. Both methods identify similar patterns in sensitivity, but our method also draws out additional information. As the search progresses, the techniques reveal how individual workers increase or decrease in the influence on the overall rostering solution's quality. Our method also helps identify workers with a lower impact on overall solution fitness and at what stage in the search these individuals can be considered highly flexible in their roster assignment.en_UK
dc.language.isoenen_UK
dc.publisherACMen_UK
dc.relationFyvie M, Mccall J, Christie L & Brownlee A (2023) Explaining a Staff Rostering Genetic Algorithm using Sensitivity Analysis and Trajectory Analysis.. In: GECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computation, Lisbon Portugal, 15.07.2023-19.07.2023. ACM, pp. 1648-1656. https://doi.org/10.1145/3583133.3596353en_UK
dc.rightsCopyright © 2023 Owner/Author(s). This work is licensed under a Creative Commons Attribution International 4.0 License.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectEvolutionary Algorithmsen_UK
dc.subjectPrincipal Component Analysisen_UK
dc.subjectAlgorithm trajectoriesen_UK
dc.subjectSensitivity Analysisen_UK
dc.subjectExplainable AI (XAI)en_UK
dc.titleExplaining a Staff Rostering Genetic Algorithm using Sensitivity Analysis and Trajectory Analysis.en_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1145/3583133.3596353en_UK
dc.citation.spage1648en_UK
dc.citation.epage1656en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.citation.conferencedates2023-07-15 - 2023-07-19en_UK
dc.citation.conferencelocationLisbon Portugalen_UK
dc.citation.conferencenameGECCO '23 Companion: Companion Conference on Genetic and Evolutionary Computationen_UK
dc.citation.date24/07/2023en_UK
dc.citation.isbn9798400701207en_UK
dc.contributor.affiliationRobert Gordon Universityen_UK
dc.contributor.affiliationRobert Gordon Universityen_UK
dc.contributor.affiliationRobert Gordon Universityen_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.identifier.isiWOS:001117972600274en_UK
dc.identifier.scopusid2-s2.0-85169044310en_UK
dc.identifier.wtid2070985en_UK
dc.contributor.orcid0000-0001-8491-7008en_UK
dc.contributor.orcid0000-0003-1738-7056en_UK
dc.contributor.orcid0000-0001-8878-0344en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.date.accepted2023-05-03en_UK
dcterms.dateAccepted2023-05-03en_UK
dc.date.filedepositdate2024-11-25en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorFyvie, Martin|0000-0001-8491-7008en_UK
local.rioxx.authorMccall, John|0000-0003-1738-7056en_UK
local.rioxx.authorChristie, Lee|0000-0001-8878-0344en_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-11-25en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-11-25|en_UK
local.rioxx.filename3583133.3596353.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9798400701207en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
3583133.3596353.pdfFulltext - Published Version669.65 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.