
Explaining a Staff Rostering Genetic Algorithm using Sensitivity
Analysis and Trajectory Analysis.

Martin Fyvie
m.fyvie@rgu.ac.uk

Robert Gordon University
Aberdeen, Scotland

John A. W. McCall
j.mccall@rgu.ac.uk

Robert Gordon University
Aberdeen, Scotland

Lee A. Christie
l.a.christie@rgu.ac.uk

Robert Gordon University
Aberdeen, Scotland

Alexander E.I. Brownlee
alexander.brownlee@stir.ac.uk

University of Stirling
Stirling, Scotland

ABSTRACT
In the field of Explainable AI, population-based search metaheuris-
tics are of growing interest as they become more widely used in
critical applications. The ability to relate key information regarding
algorithm behaviour and drivers of solution quality to an end-user is
vital. This paper investigates a novel method of explanatory feature
extraction based on analysis of the search trajectory and compares
the results to those of sensitivity analysis using “Weighted Ranked
Biased Overlap”. We apply these techniques to search trajectories
generated by a genetic algorithm as it solves a staff rostering prob-
lem. We show that there is a significant overlap between these
two explainability methods when identifying subsets of rostered
workers whose allocations are responsible for large portions of fit-
ness change in an optimization run. Both methods identify similar
patterns in sensitivity, but our method also draws out additional
information. As the search progresses, the techniques reveal how
individual workers increase or decrease in the influence on the
overall rostering solution’s quality. Our method also helps iden-
tify workers with a lower impact on overall solution fitness and at
what stage in the search these individuals can be considered highly
flexible in their roster assignment.

CCS CONCEPTS
• Theory of computation→Models of computation; • Com-
puting methodologies→ Search methodologies; Genetic al-
gorithms.

KEYWORDS
Evolutionary Algorithms, Principal Component Analysis, Algo-
rithm Trajectories, Sensitivity Analysis, Explainable AI (XAI)

ACM Reference Format:
Martin Fyvie, John A. W. McCall, Lee A. Christie, and Alexander E.I. Brown-
lee. 2023. Explaining a Staff Rostering Genetic Algorithm using Sensitivity
Analysis and Trajectory Analysis.. In Genetic and Evolutionary Computation
Conference Companion (GECCO ’23 Companion), July 15–19, 2023, Lisbon,

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
, https://doi.org/10.1145/3583133.3596353.

Portugal.ACM, NewYork, NY, USA, 9 pages. https://doi.org/10.1145/3583133.
3596353

1 INTRODUCTION
As the application of Evolutionary Algorithms (EAs) and other
population-based search metaheuristics gains popularity in do-
mains that involve cooperation with end-users, it becomes increas-
ingly important to instil trust and acceptance of these techniques.
One approach to achieving this is through the application of Explain-
able Artificial Intelligence (XAI) techniques, which has experienced
an increase of interest in recent years, likely driven by the growing
use of case-based reasoning and deep learning decision-making
strategies in end-user-facing solutions.

As shown in the 2019 survey of the field of XAI [1], EAs have been
used in a variety of ways to improve and enhance the explanation
generation process. Examples of their use can be seen in the creation
of counterfactuals [2] and as a refinement method for fuzzy rule
generation [3]. Despite the broad scope of XAI as seen in [1], EAs
as a focus of XAI studies have been under-represented. However,
this is changing as XAI’s popularity grows, as demonstrated in the
2022 GECCO XAI workshop and the 2023 EvoStar conference [4].

There exists a wide array of approaches to the generation of
explanations regarding AI-generated solutions and their decision-
making processes. Examples of model-specific explanation methods
include those applied to Multi-Layer Neural Networks (MLNNs)
[5] and Convolutional Neural Networks (CNNs) [6]. Sensitivity and
Saliency Mapping can be used to create a form of visual explanation
regarding algorithm decisions [7].

A further approach is to extract an understanding from the sensi-
tivities of the fitness function to specific variables. Similarly, the use
of surrogate models [8] can achieve a similar level of explanation
through the mining of feature importance from these explicit mod-
els of the fitness function [9, 10]. Other relevant work in Landscape
Analysis is using Search Trajectory Networks [11, 12] to visualise
algorithm search behaviour.

Sensitivity Analysis (SA), an interesting application of which can
be seen in [13], can identify the sensitivity to fitness that a variable
has. Further examples of feature sensitivity [14, 15] have been used
as a model-agnostic approach.

In this paper, we present our approach to feature extraction from
the search trajectories of EAs, known as Trajectory Analysis (TA),
which was first proposed in [16]. These features are represented as

1648

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0001-8491-7008
https://orcid.org/0000-0003-1738-7056
https://orcid.org/0000-0001-8878-0344
https://orcid.org/0000-0003-2892-5059
https://doi.org/10.1145/3583133.3596353
https://doi.org/10.1145/3583133.3596353
https://doi.org/10.1145/3583133.3596353
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3596353&domain=pdf&date_stamp=2023-07-24

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Fyvie, McCall and Christie.

variable subsets of high relevance to an end user. We decompose
the search trajectories of an EA using Principal Component Anal-
ysis (PCA) techniques and subsequently mine them for pertinent
and explanatory features. For comparison, we examine the results
obtained by applying Sensitivity Analysis (SA), a method that em-
ploys random samples from search trajectories to identify variables
of interest. We showcase the first application of TA to a real-world
problem.

The remainder of this paper is structured as follows: Section 2
provides background information on our definition of trajectory
analysis, the proposed method of explainable feature extraction,
sensitivity analysis, and the similarity scoring method used to com-
pare our results. Section 3 describes how our algorithm trajec-
tory datasets are generated and organised for analysis. Section 4
presents the comparative experimental results between TA and SA
on the generated datasets, while Section 5 summarises the work
and presents our conclusions.

2 EXPLAINABILITY METHODS
We beginwith a definition of search trajectories and our approach to
analysing them to generate explanations. This is followed by a brief
summary of the well-established techniques of sensitivity analysis
and how they might be used to explain the progress of an EA.
SA provides our baseline for comparison. Lastly we introduce the
ranking method we use for the comparison between the SA results
and our own and how we define the convergence of a variable.

2.1 Search Trajectory Definition
In this paper, a search trajectory, 𝑇 , is defined as a collection, 𝑋 , of
solutions visited during a population-based search, ordered by their
generation 𝑔 (Equation 1). Each solution’s variables will be drawn
from the discrete space Z. This represents a list of Z𝑔𝑁𝑛 solutions
ordered by generation 𝑔, pop size 𝑁 and problem dimension 𝑛. For
this paper all solution variables are integers.

𝑇 = [𝑋1, . . . , 𝑋𝑔]⊺

𝑋 = {𝑥1, . . . , 𝑥𝑁 }⊺

𝑥 = [𝑥1, . . . , 𝑥𝑛] in Z𝑛
(1)

The search trajectories in our study were created by running a
genetic algorithm on the target problem (fully defined in Section 3.1)
100 times, each using a random seed to create the initial population
of solutions. Each run has 50 generations (𝑔) of 10 solutions. Each
solution (𝑥) consisted of a discreet variable string encoding with a
fixed length of 𝑛 = 141. The encoding employed for these solutions
was in the integer domain Z as outlined earlier. These values were
selected after a period of refinement to allow for sufficient run
length. It is important to note that this definition of a trajectory
is not limited to the integer domain. The approach can also be
applied to problems in which the solutions lie in real-valued space
R however the problem definition determined the discreet value
solution structure and solution length.

2.2 Search Trajectory Analysis
The Search Trajectory Analysis approach outlined in this paper
requires the pre-processing of each optimization runs trajectory
(𝑇). To achieve this, Principal Component Analysis (PCA) was used

to decompose these datasets. Once this process is complete our fea-
ture extraction method can be applied. Preliminary testing of the
results had shown high covariance between some of the variables
in the solution populations. Because of this, the application of PCA
was applied via the use of Single Value Decomposition (SVD) of the
correlation matrix generated from each trajectory. The resulting
directional vectors from using PCA on our dataset of trajectories
(Equation 2) are a set of𝑚, 𝑛 × 1 orthonormal eigenvectors in R𝑛 .
The 𝑝𝑖 vectors, also known as Principal Components, are comprised
of the elements [𝑝𝑖1, . . . , 𝑝

𝑖
𝑛] which represent the weighting of each

variable. These weightings or coefficients describe the contribution
of each variable to the corresponding principal component. The
absolute value of these coefficients indicates the variable’s influ-
ence in maximizing variance across the dataset through the best-fit
hyperplane. The resulting subspace characterizes the algorithm’s
search trajectory in terms of variable variance and how it changes
with the algorithm’s position on the fitness gradient.

𝑃 = [𝑝1, . . . , 𝑝𝑚]⊺,𝑚 ≤ 𝑛

𝑝𝑖 = [𝑝𝑖1, . . . , 𝑝
𝑖
𝑛]

(2)

Our feature extraction method is based on the concept of vari-
able contributions shown in Equation 3. These values are used to
calculate the overall contribution each variable has in determining
a solution’s position in the search space at a given generation.

𝐶′𝑖 =
𝑁∑︁
𝑘=1

©«
(∑𝑛

𝑗=1 𝑝
𝑖
𝑗
𝑥𝑘
𝑗

)
𝑁

ª®®¬𝑝𝑖 . (3)

Here, 𝐶′
𝑖
belonging to Z, is a vector of mean variable contri-

butions across component 𝑝𝑖 of any given generation of size 𝑁

solutions with dimension 𝑛. In Equation 3, for any given generation
of solutions, the contribution of each variable (j) in a solution (k) is
calculated as the product of the variable’s value and its correspond-
ing component coefficient in principal component 𝑖 . The mean
value across all solutions in that generation is taken and stored in
𝐶′
𝑖
. Each instance of 𝐶′

𝑖
represents the contribution of the variables

across component 𝑖 at generation k. This provides us with a method
for describing the influence each variable in the problem has in
determining the current population’s overall position.

For each optimisation run we collect the resulting contribution
vectors at each generation. This provides us with a generation-by-
generation view of the mean contribution value that each variable
is calculated to have. Outlined fully in Section 3.3 is a method
of determining which generations were grouped together for our
analysis. For each collection of generations used, we then ordered
them by ranking the mean absolute value of the contribution of
each variable from 1 to 𝑛. Here 1 denoted the most influential and 𝑛
denoted the least. The final ranking of each variable is determined
by taking the mean value across all 100 runs at each generation.

2.3 Sensitivity Analysis
Sensitivity Analysis (SA) [17] can be used to measure the sensitivity
of the fitness function to a variable by its inclusion or exclusion
from a linear regression on the fitness values. This provides an
insight into how sensitive a solution’s fitness is to the presence

1649

Explaining a Staff Rostering Genetic Algorithm using Sensitivity Analysis and Trajectory Analysis. GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

of that variable. There are three main methods for applying SA
to a dataset in terms of variable selection, these being Forwards
Selection, Backward Selection, and Bi-Directional Elimination [18].
Forward selection involves the addition of variables one at a time,
beginning with the variable having the highest correlation with
the dependent variable. This is repeated until no further significant
improvement is noticed. Backward selection involves creating a
model with all possible variables present. The significance of each
variable is calculated and the least significant is removed. This
is repeated until no further improvement is noticed. Lastly, Bi-
Directional elimination draws from both previous approaches to
add and remove variables based on their calculated significance
value. Inspired by the work in [13], our method also utilizes a step-
wise linear regression analysis of the rank-transformed variable
values. A major difference in our approach was to use backward
selection as the total number of variables (𝑛 = 141) was significantly
smaller than the total sample size in each trajectory. This also helps
with dealing with variables with high collinearity as backward
selection is more likely to retain them when compared to forward
or bi-directional selection which may remove them all. Variables are
removed from the selection pool using least square regression. This
is done should the corresponding prediction p-value be greater than
the significance level which was set at 𝑝 = 0.05. The results of this
process are a set of standardised rank regression coefficients (SSRC)
representing the overall impact each variable has on the fitness
value of a solution. We take these coefficients and apply a further
ranking to them so that the output is a set of ranked variables based
on their SSRC. This process can be seen in a pseudo-code form in
Algorithm 1

Algorithm 1 Sensitivity Analysis with Backward Selection
1: Define a significance level 𝛼 = 0.05
2: Perform linear regression with all variables included
3: while there are variables in the model do
4: Calculate p-values for all variables in the model
5: Find the variable with the highest p-value: 𝑝𝑚𝑎𝑥

6: if 𝑝𝑚𝑎𝑥 > 𝛼 then
7: Remove the variable with the highest p-value from the

model
8: else
9: Break the loop
10: end if
11: end while
12: Calculate standardized rank regression coefficients (SSRC) for

remaining variables
13: Rank the variables based on their SSRC

2.4 Weighted Rank Biased Overlap
Weighted Rank Biased Overlap (WRBO) is a similarity measure that
allows the comparison of two lists of ranked variables [19]. The
method uses an "Average Overlap" weight parameter which can add
additional weight to a selection of the highest-ranked members of
these lists. The process generates a score that takes a value of [0, 1],
where 0 shows no overlap or similarity and 1 shows a complete
overlap and full similarity between two ranked lists both in terms of

membership and rank order. This process can be seen in Algorithm
2 which was created from a Python implementation of the WRBO
function outlined in [20].

Algorithm 2 Rank Biased Overlap (RBO) Python

Require: Two lists 𝑆 and 𝑇 , weight parameter 𝑝 (default: 0.9)
1: Determine the maximum length 𝑘 ← max(len(𝑆), len(𝑇))
2: Calculate the intersection at depth k: 𝑥𝑘 ← |set(𝑆) ∩ set(𝑇) |
3: Initialize summation term: summ_term← 0
4: for 𝑑 = 1 to 𝑘 do
5: Create sets from the lists:
6: set1← set(𝑆 [: 𝑑]) if 𝑑 < len(𝑆) else set(𝑆)
7: set2← set(𝑇 [: 𝑑]) if 𝑑 < len(𝑇) else set(𝑇)
8: Calculate intersection at depth d: 𝑥𝑑 ← |set1 ∩ set2|
9: Compute agreement at depth d: 𝑎𝑑 ← 𝑥𝑑

𝑑

10: Update: summ_term← summ_term + 𝑝𝑑 · 𝑎𝑑
11: end for
12: Calculate Rank Biased Overlap (extrapolated):
13: 𝑟𝑏𝑜_𝑒𝑥𝑡 ← 𝑥𝑘

𝑘
· 𝑝𝑘 + (1−𝑝)𝑝 · summ_term

Recent work involving the use of WRBO [21] highlights its abil-
ity to increase the interpretability of Machine Learning models.
Classically, methods such as Spearman Rank Correlation or Kendall
Tau would be used for the comparison of ranked lists. A similar
analysis using Spearman Rank Correlation was attempted however
the results did not clearly identify patterns in the data. One advan-
tage that WRBO has over these alternative approaches is that they
both require lists of ranked items to contain the same number of
elements and the same elements themselves. This first issue does
not occur when comparing the rankings of all 141 variables how-
ever they are unable to perform this task reliably on the top 10 lists.
This is because there is no guarantee that both lists will contain
the same 10 variables.

The WRBO process is highly relevant to our study as it allows us
to place a higher emphasis on high-ranking values when comparing
the results between the PCA approach and SA. Variables placed
nearer the top of each list will have a higher mean ranking and so
will be considered of higher importance or sensitivity. After some
initial testing, a𝑊𝑅𝐵𝑂 − 𝑝 value of 0.9 was selected. This value
determines the contribution of the top variables in each list. With
a value of 0.9, the top 10 variables were responsible for 85.56% to
the total scoring. This value also aligned with our perception that
variable subsets of size greater than 10 begin to become difficult to
interpret if presented to an end-user.

2.5 Variable Convergence
In order to gain insights regarding variable convergence we calcu-
lated, for each variable, the generation at which its variance had
dropped below a selected threshold. To achieve this we calculated
the within-generation variance using Equation 4 for each variable,
in each generation of every run.

𝑉𝑎𝑟𝑖 𝑗 =
1

𝑁 − 1

𝑁∑︁
𝑘=1
(𝑥𝑖 𝑗𝑘 − 𝑥𝑖 𝑗)2 (4)

1650

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Fyvie, McCall and Christie.

Here, we calculate the variance of the 𝑖-th variable of the 𝑘-th
solution in population 𝑗 . 𝑁 is the total population size as outlined
in Equation 1. 𝑥𝑖 𝑗 is the mean value of the 𝑖-th variable in that
solution.

For each optimization run, this generates a list showing the
variance of each variable at each generation. For each variable, we
normalize these values across all generations and then sort them
in descending order. In this paper, we consider a variable to have
mostly converged when the normalized variance value has reached
or is below the threshold of 0.01 or 1% of the total observed variance.

3 TRAJECTORY DATASET GENERATION
3.1 Rostering Problem
The problem that forms the focus of our case study is a simplified
variant of the staff roster allocation problem described in [22, 23].
This problem aims to minimize the overall range between the mini-
mum and the maximum number of workers allocated on each day
of the week. This ensures a consistent number of employees work-
ing on each day of the week across a two-week period. Rosters for
each worker were created indicating shift start and end times of
varying lengths representing up to a three-month period, ensuring
at least two consecutive days off each week. If an allocated roster
was shorter than the two-week scheduling period, a worker would
repeat that pattern. Each worker was assigned a randomly selected
subset of these rosters with a minimum of 1 and a maximum of 5
options. For this problem, the indices of the rosters in the subsets
are treated as the worker’s preference. This means that the roster at
index 1 is the worker’s preferred choice. Index two would be their
second preference and so on. An example solution representation
can be seen in Table 1. Here, each worker is represented by the
variable 𝑥 . The value assigned to them is the index of the roster
they have currently been assigned to from their specific subset, e.g.,
a value of 3 would indicate that worker 𝑥2 has been assigned to
their third choice of roster.

Table 1: Cost Function Weight (𝑊) Effectiveness

𝑥1 𝑥2 𝑥3 . . . 𝑥𝑛

1 3 2 . . . 2

In the original problem, 𝐴𝑖, 𝑗 denotes the "attendance matrix" of
size 𝑛 × 7, with rows representing weeks and columns representing
days. This maps to our trajectory definition in that each value in
𝐴 is the summation of the number of workers scheduled to work
on that specific day 𝑗 and week 𝑖 , based on whether their current
assigned roster has scheduled them to work.

The range is calculated by taking the minimum and maximum
of matrix A for each column 𝑗 , used to compute the normalised
range of column j as shown in Equation 5.

𝑅 𝑗 =

𝑚𝑎𝑥
𝑗

(
𝑎𝑖 𝑗

)
−𝑚𝑖𝑛

𝑗

(
𝑎𝑖 𝑗

)
𝑚𝑎𝑥

𝑗

(
𝑎𝑖 𝑗

) (5)

The cost function aims to minimize the overall relative factor across
all days, squared to smooth out range values, with a set of weights

𝑤 to reduce the impact of weekends with lower resources as shown
in Equation 6. A set of weights,𝑤 , are included in which the weight
𝑤 𝑗 is a weighting applied to day 𝑗 . This is done to reduce the
overall impact of the weekends (𝑗 = 6, 7) having significantly lower
levels of available resources, resulting in a higher relative factor
that could disproportionately affect the score. A daily weighting
vector of𝑤 = (1, 1, 1, 1, 1, 10, 10) was used as in the original problem.
As noted in that paper "a range of 10 on Saturday should not be
considered the same as a range of 10 on any other day of the week
due to the smaller number of attending resources". The higher
weight on weekends is designed to reduce this impact.

𝑐𝑜𝑠𝑡 =
∑︁

1≤ 𝑗≤7
𝑤 𝑗𝑅

2
𝑗 +

(∑︁
𝑖∈𝑋

𝑃𝑖

)
𝑊 (6)

The cost function is modified to include 𝑋 , the set of all workers,
and 𝑃 = (𝑝𝑖, 𝑗), a binary array in which 𝑝𝑖 = 1 if worker 𝑖 has been
allocated their first preference of roster, otherwise 0. The second
summand in the cost function sums the total number of workers
not allocated their first preference with overall weight,𝑊 , applied
to this soft constraint. This weight value was set at 0.001. The
value was selected after testing to have minimal impact on early,
high-fitness solutions. As the range is reduced, the effect𝑊 has
on a solution’s fitness increases. Table 2 shows how this weight
is used to increase the fitness of a solution when compared to a
similar solution with the same range value. The percentage change
in fitness as the overall range is reduced is shown in the "W %"
column. Shown in bold is the solution that benefits most from this
weighting when compared to similar solutions.

The aim of this addition is to introduce some bias in the search
towards solutions with a lower number of workers that did not get
assigned their first, preferred roster in the solution. This occurs
mostly when the range has been significantly reduced.

Table 2: Cost Function Weight (𝑊) Effectiveness

Fitness Range Tot. Non-1st Choice W %

0.464 0.397 67 16.876
0.465 0.397 68 17.128

3.2 Genetic Algorithm Trajectory Creation
The EA implementation used in this paper was that of a (𝜇 + 𝜆)
Genetic Algorithm (GA), where 𝜇 is an initial population and 𝜆 is the
population of offspring solutions once the internal operators have
been used. This algorithm generates each successive population
of solutions by performing the Selection, Crossover and Mutation
operations on the parent population. The solutions used a discrete
variable string encoding so that each worker was represented by
an integer denoting the index of the roster they were currently
assigned to out of their possible choices. This means for a given
worker, a value of 5 would represent the 5th preference of roster.
As each worker could have a minimum of 1 and a maximum of
5 possible choices, the crossover and mutation operators selected
allow for the potential to repair a solution. As these operators may
assign a worker with 3 possible rosters an index greater than 3
for example, these methods contain repair mechanisms capable of

1651

Explaining a Staff Rostering Genetic Algorithm using Sensitivity Analysis and Trajectory Analysis. GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

dealing with this situation. The implementation of these operators
are taken from the Python Multi-Objective Optimisation (PYMOO)
library [24]. Tournament Selection and Simulated Binary Crossover
were selected as they were the default used in examples provided in
PYMOO’s documentation. Refinement and parameter tuning was
not performed as the exact performance of the GAwas not the focus
of this study. After some initial testing, the GA’s performance was
deemed acceptable in that it reliably found better fitness solutions
over the course of the optimization run, creating suitable search
trajectories for our purpose. Mutation was handled by the PYMOO
implementation of Polynomial Mutation, details of which can be
found in [25].

3.3 Fitness Quartiles
In order to gain insight into which variables are driving the opti-
mization process at different stages of the search, the trajectories
were split into four "Fitness Quartiles". These were calculated by
measuring the mean solution fitness in each generation of an opti-
mization run. This was used to select the upper and lower bounds,
in terms of generation number, for an approximately 25% share of
total fitness change. This meant that each quartile would represent
approximately one-quarter of all fitness change. An illustrative
example of this can be seen in Figure 1.

Figure 1: Mean Fitness and Fitness Quartiles

Here, each vertical line represents an example of the upper and
lower bounds of the quartiles, staring at generation 0. Generations
between these bounds are used in their corresponding quartile for
our analysis. This provides us with four separate stages in a search
trajectory in which to apply our methods and compare which vari-
ables were seen to be driving fitness change more than others. Each
optimization run had these upper and lower bounds calculated in-
dividually so that solutions captured in each quartile were specific
to each run. As seen in Figure 1 there is the potential for a long
"tail" of low-variance solutions when the algorithm is close to con-
vergence. To avoid these from having a disproportionate effect on
the calculation of the fitness windows and variable importances in
each, we assign the fourth quartile at the generation at which 99%
of fitness has been achieved rather than 100%. The figure shows
how using the 99% value truncates the trajectory, removing these
low-variance solutions from the analysis.

4 EXPLAINABILITY RESULTS AND
COMPARISONS

The purpose of our experimentation is to discover whether our
proposed method is capable of identifying variables of high impor-
tance at differing stages of an optimization run. We use the variable
subsets identified as being of high sensitivity from the results of
the Sensitivity Analysis and compare the Trajectory Analysis re-
sults to these. This offers an insight into whether our proposed
method is discovering similar features as the SA approach as well
as highlighting potential variable importances not seen in the SA
results.

Figure 2 illustrates the distribution of generations in which each
variable was calculated to have converged across all 100 runs in our
dataset. This is measured by observing the generation in which the
variance of that variable reaches less than 1% across all solutions
in a generation. These have been ordered from earliest to latest to
converge from left to right. The red horizontal lines indicate the
mean generation for the fitness quartiles as seen in Table 3 and
help identify in which quartile a variable tends to converge.

Table 3: Mean Fitness Quartile Generations

Q Start End Total Gens Fitness %

1 0 2 2 0 - 25
2 2 4 2 25 - 50
3 4 7 3 50 - 75
4 7 36 29 75 - 99

This figure also highlights that there are some variables that
consistently converge earlier in the trajectory than other, regardless
of the starting point that the search algorithms has.

Figure 2: Variable Convergence by Generation - Ordered

Shown in Table 4 are the mean convergence generation numbers
of the fastest and slowest to converge variables. Here we show that
variables {6,125,86,17,139} all have a mean convergence generation

1652

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Fyvie, McCall and Christie.

less than 9, placing these in the early stages of the 4th fitness quartile.
This would place these variables at the far left of Figure 2.

Table 4: Mean Variable Convergence Generations

First 5 Converging

Variable 6 125 86 17 139

Mean Conv. Gen 6.16 6.38 7.18 7.29 8.21

Last 5 Converging

Variable 110 30 48 22 58

Mean Conv. Gen 26.78 27.74 27.79 28.25 30.32

Variables {110,30,48,22,58} are the last values to converge when
measured by their mean convergence generation value. These
would be placed on the far right of Figure 2.

4.1 Sensitivity Analysis Results
The sensitivity analysis results seen in Figure 3 shows the R-Squared
values of the linear models used in the SA approach on the 100
simulation runs. Figure 3 shows the distribution of R-Squared values
when the SA is applied to a subset of each simulation, defined by
the fitness quartiles.

The results show that the approach produced R-Squared values
above the threshold of 0.9 however the fitness quartiles do show
some level of variation in the R-Squared values. The results show
that as the search progresses, we see a slight decline in the R-
Squared values as the model is able to explain slightly less variation
in fitness, given the input variables during those quartiles.

Figure 3: SA R-Squared Results Over 100 Runs Comparison

The variable rankings produced by the SA technique when ap-
plied to subsets of each optimization run by the fitness quartiles

are shown in Table 5. Each row presents the top 10 variable indices
when ranked from most to least sensitive for each fitness quartile.
From this table, an example of changing variable sensitivity can
be seen in variables {98, 17} which were highly ranked in fitness
quartiles Q1 and Q2. By Q3, only variable {98} continued to be
highly ranked as {17} falls below the top 10 ranks.

Table 5: Sensitivity Analysis - Top 10 Ranked Variables by
Quartile

Rank 1 2 3 4 5 6 7 8 9 10

Q1 Var 138 17 98 18 34 57 7 88 120 134
Q2 Var 17 98 135 32 46 48 12 70 41 76
Q3 Var 65 70 10 110 25 98 46 76 32 45
Q4 Var 68 45 46 98 85 70 27 42 113 18

The results show that variables {98, 17} were highly ranked in
Q1 and Q2 and {98} remained highly ranked in Q3 and Q4. Variable
{46} was highly ranked in Q2, Q3 and Q4. Each fitness quartile
shows some overlap with the others as well as identifying variables
unique to that portion of the trajectory, indicating that as fitness is
reduced, some variables remain highly sensitive while others vary
considerably. Examples of variables that are only highly sensitive
in one quartile include variables {57, 7, 88} in Q1 and {85, 66, 125}
in Q4.

4.2 Search Trajectory Analysis Results
Figure 4 shows the percentage of explained variance by each com-
ponent after the trajectories have been decomposed via PCA. It can
be seen from this figure that there is a sharp drop-off of explained
variance from component 2 onwards. Due to this rapid drop-off,
the rest of the results are calculated using the first 3 components
which are able to explain 45.86% of the variance.

Figure 4: Explained Variance Percentage by Component

This rapidly reducing level of variance explained suggests that
little would be gained by adding additional components to the

1653

Explaining a Staff Rostering Genetic Algorithm using Sensitivity Analysis and Trajectory Analysis. GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

calculations versus the trade-off between higher explained variance
and interpretability.

Table 6 presents the variable rankings produced by TA across
all fitness quartiles. For each fitness quartile, the results are shown
for each component. The results show that the ranking of vari-
ables based on contribution scores changes over the course of the
trajectory, similar to what we see in the SA results.

Table 6: TA Variable Ranks - Fitness Quartiles

Quartile 1

Rank 1 2 3 4 5 6 7 8 9 10

PC1 6 17 112 34 98 71 2 32 138 95
PC2 98 17 2 112 6 138 127 32 34 62
PC3 138 6 98 17 34 95 139 112 125 126

Quartile 2

Rank 1 2 3 4 5 6 7 8 9 10

PC1 32 2 8 88 108 112 98 138 135 95
PC2 2 98 32 91 94 138 117 46 27 41
PC3 138 25 95 98 75 46 10 108 32 65

Quartile 3

Rank 1 2 3 4 5 6 7 8 9 10

PC1 2 32 8 138 91 38 88 25 98 65
PC2 91 2 94 41 32 133 27 98 117 38
PC3 138 75 25 91 10 65 46 32 27 44

Quartile 4

Rank 1 2 3 4 5 6 7 8 9 10

PC1 2 65 135 32 38 25 88 76 42 59
PC2 133 117 2 94 38 91 113 96 32 48
PC3 65 75 25 138 133 48 42 10 91 113

Variable {98} is ranked 5th, 1st and 3rd most contributing in Q1
across components PC1, PC2 and PC3 respectively. Over the course
of optimizations, these rankings steadily drop between fitness quar-
tiles until it no longer ranks in the top 10, suggesting a falling level
of contribution over time. The opposite behaviour is seen in vari-
able {2} which initially ranks 7th and 3rd across components PC1
and PC2 but rises to 1st and 2nd rank by Q3 and remains highly
influential in these components for the remainder of the optimiza-
tion. The mean convergence generations for these variables are
10.81 for {98} and 13.43 for {2}, showing that variable {2}, which
converges on average much later than variable {98} is considered
highly influential during the later stages of the optimization runs.

4.3 Sensitivity Analysis and Trajectory Analysis
Results Comparison

To enable the comparison between the TA and SA ranking results,
we apply the WRBO technique to generate similarity scores be-
tween the ranked lists. The WRBO score takes a value of [0,1] with
1 representing a perfect match in both membership and ranking

order and 0 signifying no similarity at all. We used a weight parame-
ter of 𝑝 = 0.9 so that the top 10 variables contribute 85.56% towards
the scores and the remaining variables contributed 14.44%. Shown
in Table 7 is an example of the variable indices found to be in the
top 10 rankings based on either sensitivity (SA) or contribution
(TA). Values in bold are variables belonging to both lists.

Table 7: Quartile 1 Illustrative Result Comparison

Rank 1 2 3 4 5 6 7 8 9 10

PC1 Top 10 6 17 112 34 98 71 2 32 138 95
SA Top 10 138 17 98 18 34 57 7 88 120 134

Table 8 displays the results of the WRBO similarity scoring be-
tween the SA variable rankings and the TA results for each fitness
quartile. The Table also highlights the overlap between the two
method’s top 10 ranked variables. The order of the variables in the
"Shared - Top10" section is the order in which they are found in the
TA results, from highest ranked to lowest. The results show that
the earlier quartiles have a higher level of overlap between the SA
results and the TA results. This overlap shows that both methods
are identifying some of the same workers as being critical to the
rostering plan. This overlap drops off quickly between quartiles
Q3 and Q4 with the ranked list overlap falling from a maximum
of 5 out of 10 to only 2 out of 10 across all three components. This
indicates that the rank order of the variables is diverging over time
between the two approaches.

Table 8: SA and TAWRBO and Variable Overlap Results

Quartile 1
PC1 PC2 PC3

Shared - Top10 {17,34,98,138} {98,17,138,34} {138,98,17,34}
WRBO - Top10 0.374 0.406 0.574
WRBO - All 0.358 0.358 0.566

Quartile 2
PC1 PC2 PC3

Shared - Top10 {32,98,135} {98,32,46,41} {98,46,32}
WRBO - Top10 0.199 0.357 0.209
WRBO - All 0.229 0.229 0.246

Quartile 3
PC1 PC2 PC3

Shared - Top10 {32,25,98,65} {32,98} {25,10,65,46,32}
WRBO - Top10 0.175 0.093 0.328
WRBO - All 0.184 0.184 0.334

Quartile 4
PC1 PC2 PC3

Shared - Top10 {42} {113} {42,113}
WRBO - Top10 0.044 0.044 0.088
WRBO - All 0.102 0.102 0.134

The similarity scores between the SA rankings and the first three
components rankings in quartile 1 show that PC3 has the highest

1654

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Fyvie, McCall and Christie.

similarity both across the top 10 variables and across all 141 at 0.574
and 0.566 respectively. All three components share the same four
variables, {17,34,98,138}, in common with the SA rankings. As the
top 10 variables are contributing approximately 85% towards this
value, this would suggest that the differing WRBO scores between
the components are due to the rank ordering of the remaining 131
variables. with component PC3 having overall closer rankings to
the SA approach than the other components, its WRBO score is
higher.

The results show that as the search continues, we see that the SA
and TA variable rankings continue to diverge. When considering
the scores for the top 10 variables, Quartile 1’s highest similarity
score is 0.574 in PC3. This reduces to 0.357 in PC2 during quartile 2.
In quartile 3 this value decreases to 0.328 in PC3. By quartile 4 the
largest drop in score is seen as the maximum value is 0.088 in PC3.

The WRBO scores across all 141 variables closely match those of
the top 10 lists. Interestingly, there are occurrences of the WRBO
score for all 141 variables being higher than the top 10 scores, de-
spite their approximately 15% contribution to the value. An example
of this can be seen in PC1 during quartiles Q2, Q3 and Q4. This
implies that, due to the weight parameter, the higher WRBO-All
score is due to a larger number of the remaining 131 variables being
ranked similarly to the SA results. This causes the score to be higher
than when only considering the top 10 variables.

This shows that while both approaches differ in their ranking of
the most influential variables, lower influence variables are being
both scored and ordered in a more similar fashion.

Lastly, Figure 5 shows the mean number of roster options avail-
able for each variable to take when filtered to the Top-10 ranked
variables of each component and SA. These results show that over
the course of the optimization, variables with a larger number of
possible discrete values make up a greater proportion of the Top-10
ranked variables.

Figure 5: Mean Roster Options by F-Quartile - Top-10 Vars

The Figure shows that between the first and last quartile the
mean number of options for variables increases from between 2.75
and 3.5 to between 4 and 4.6, indicating that over the course of

the optimization, a larger proportion of the Top-10 variables by
rank are being allocated to variables with a larger possible value
pool. These are also typically the variables that take the longest to
converge as measured by our variance calculations.

5 CONCLUSIONS
In this paper, we examine the extent to which the results of Sen-
sitivity Analysis and Search Trajectory Analysis agree on search
trajectories generated by a GA for a rostering problem. Both meth-
ods are capable of ranking workers based on their importance in
roster assignments. SA results are derived from fitness sensitivity,
while TA results come from PCA decomposition of search trajecto-
ries to show a workers contribution to the searches position in the
created subspace. The main explanatory insights from our results
are regarding the flexibility with which specific workers can be
assigned to rosters and include where fitness value is most gained
during the search. Our findings reveal that during the early genera-
tions of optimisation, there is a meaningful overlap in the top 10
rankedworkers and overall worker rankings, although TA identifies
a greater number of distinct workers. The overlap shows that the
TA approach, while also identifying variables of high contribution,
may also be identifying some level of variable-fitness sensitivity
in the early stages of the search. The overlap decreases at the low
added-value end of a search trajectory. As the TA approach ex-
plains approximately 46% of variance across the first three PCs,
it is possible that a greater level of agreement between the two
methods could be gained by using additional components. This
however may come at the cost of the interpretability of the results.
Further analysis is also planned to address the question of whether
it is more accurate to measure the mean relevance of each variable
across all components and at each generation, regardless of the
trade-off between accuracy and interpretability.

We propose that TA, accounting for the algorithm’s search be-
haviour, may offer additional insights into algorithmic behaviour
such as those seen in our previous work. It should be noted that
some overlap is expected among all explanatory methods. This over-
lap adds confidence that our approach is highlighting meaningful,
explanatory insights to end users. By comparing TA to SA results,
we highlight key groups of workers responsible for a large share of
fitness. Furthermore, we provide end-users with a list of workers
with flexible roster assignments and minimal fitness impact at the
low added-value end of the search. This in turn helps to explain
the GAs choices as it focuses on high-value individuals early in
the search. Further explanation can be provided to the end-user
through the explanation of the solutions themselves as we can show
which workers are key to a good fitness solution and those who
have additional assignment flexibility with lower fitness impact.

ACKNOWLEDGMENTS
This paper was written as part of a funded PhD project supported by
TheData Lab and BTGroup plc. This work has also greatly benefited
from numerous scientific discussions at the Dagstuhl Seminar 22182
"Estimation-of-Distribution Algorithms: Theory and Applications".

REFERENCES
[1] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-

netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel

1655

Explaining a Staff Rostering Genetic Algorithm using Sensitivity Analysis and Trajectory Analysis. GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable
Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI. Information Fusion, 58:82–115, 2020.

[2] Shubham Sharma, Jette Henderson, and Joydeep Ghosh. Certifai: Counterfactual
explanations for robustness, transparency, interpretability, and fairness of artifi-
cial intelligence models. Proceedings of the AAAI/ACM Conference on AI, Ethics,
and Society, Feb 2020.

[3] A. Duygu Arbatli and H. Levent Akin. Rule extraction from trained neural
networks using genetic algorithms. Nonlinear Analysis: Theory, Methods & Appli-
cations, 30(3):1639–1648, 1997.

[4] Brownlee A.E.I. Cagnoni S. Iacca G. McCall J.A.W. Walker D. Bacardit, J. "Evo-
lutionary Computation and Explainable AI: a year in review". Late-breaking
Abstracts, EvoStar Conference 2023, Brno, Czech Republic.

[5] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important
features through propagating activation differences. In International conference
on machine learning, pages 3145–3153. PMLR, 2017.

[6] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015.

[7] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers.
Advances in neural information processing systems, 30, 2017.

[8] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011.

[9] Aidan Wallace, Alexander E. I. Brownlee, and David Cairns. Towards explaining
metaheuristic solution quality by data mining surrogate fitness models for impor-
tance of variables. In Max Bramer and Richard Ellis, editors, Artificial Intelligence
XXXVIII, pages 58–72, Cham, 2021. Springer International Publishing.

[10] Manjinder Singh, Alexander E. I. Brownlee, and David Cairns. Towards explain-
able metaheuristic: Mining surrogate fitness models for importance of variables.
In Proceedings of the Genetic and Evolutionary Computation Conference Compan-
ion, GECCO ’22, page 1785–1793, New York, NY, USA, 2022. Association for
Computing Machinery.

[11] Gabriela Ochoa, Katherine Malan, and Christian Blum. Search trajectories illu-
minated. ACM SIGEVOlution, 14:1–5, 07 2021.

[12] Gabriela Ochoa, Katherine Malan, and Christian Blum. Search trajectory net-
works: A tool for analysing and visualising the behaviour of metaheuristics.
Applied Soft Computing, 109:107492, 05 2021.

[13] Jonathan Wright, Mengchao Wang, Alexander Brownlee, and R.A. Buswell. Vari-
able convergence in evolutionary optimization and its relationship to sensitivity

analysis. 01 2012.
[14] Paulo Cortez and Mark J Embrechts. Opening black box data mining models

using sensitivity analysis. In 2011 IEEE Symposium on Computational Intelligence
and Data Mining (CIDM), pages 341–348. IEEE, 2011.

[15] Paulo Cortez and Mark J Embrechts. Using sensitivity analysis and visualization
techniques to open black box data mining models. Information Sciences, 225:1–17,
2013.

[16] Martin Fyvie, John AW McCall, and Lee A Christie. Towards explainable meta-
heuristics: PCA for trajectory mining in evolutionary algorithms. In International
Conference on Innovative Techniques and Applications of Artificial Intelligence,
pages 89–102. Springer, 2021.

[17] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cari-
boni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity
analysis: the primer. John Wiley & Sons, 2008.

[18] Samprit Chatterjee, AS Hadi, and B Price. Regression analysis by example john
wiley & sons. Inc., New York, 2000.

[19] William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for
indefinite rankings. ACM Transactions on Information Systems (TOIS), 28(4):1–38,
2010.

[20] Krupesh Raikar. How to objectively compare two ranked lists in python, 01 2023.
[21] Alessia Sarica, Andrea Quattrone, and Aldo Quattrone. Introducing the rank-

biased overlap as similarity measure for feature importance in explainable ma-
chine learning: A case study on parkinson’s disease. In Mufti Mahmud, Jing He,
Stefano Vassanelli, André van Zundert, and Ning Zhong, editors, Brain Informat-
ics, pages 129–139, Cham, 2022. Springer International Publishing.

[22] Mary Dimitropoulaki, Mathias Kern, Gilbert Owusu, and Alistair McCormick.
Workforce rostering via metaheuristics. In Artificial Intelligence XXXV: 38th
SGAI International Conference on Artificial Intelligence, AI 2018, Cambridge, UK,
December 11–13, 2018, Proceedings 38, pages 277–290. Springer, 2018.

[23] K. N. Reid, J. Li, A. E. I. Brownlee, M. Kern, N. Veerapen, J. Swan, and G. Owusu.
A hybrid metaheuristic approach to a real world employee scheduling problem.
In Proc. of the Genetic and Evolutionary Computation COnference. Prague, Czech
Republic, 2019. Accepted, to appear.

[24] J. Blank and K. Deb. pymoo: Multi-Objective Optimization in Python. IEEE
Access, 8:89497–89509, 2020.

[25] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. Self-adaptive simulated
binary crossover for real-parameter optimization. In Proceedings of the 9th annual
conference on genetic and evolutionary computation, pages 1187–1194, 2007.

1656

	Abstract
	1 Introduction
	2 Explainability Methods
	2.1 Search Trajectory Definition
	2.2 Search Trajectory Analysis
	2.3 Sensitivity Analysis
	2.4 Weighted Rank Biased Overlap
	2.5 Variable Convergence

	3 Trajectory Dataset Generation
	3.1 Rostering Problem
	3.2 Genetic Algorithm Trajectory Creation
	3.3 Fitness Quartiles

	4 Explainability Results and Comparisons
	4.1 Sensitivity Analysis Results
	4.2 Search Trajectory Analysis Results
	4.3 Sensitivity Analysis and Trajectory Analysis Results Comparison

	5 Conclusions
	Acknowledgments
	References

