Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/35184
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJohnston, Pennyen_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorSwingler, Kevinen_UK
dc.date.accessioned2023-06-07T00:01:59Z-
dc.date.available2023-06-07T00:01:59Z-
dc.date.issued2023en_UK
dc.identifier.urihttp://hdl.handle.net/1893/35184-
dc.description.abstractWhen deep-learning classifiers try to learn new classes through supervised learning, they exhibit catastrophic forgetting issues. In this paper we propose the Gaussian Mixture Model - Incremental Learner (GMM-IL), a novel two-stage architecture that couples unsupervised visual feature learning with supervised probabilistic models to represent each class. The key novelty of GMM-IL is that each class is learnt independently of the other classes. New classes can be incrementally learnt using a small set of annotated images with no requirement to relearn data from existing classes. This enables the incremental addition of classes to a model, that can be indexed by visual features and reasoned over based on perception. Using Gaussian Mixture Models to represent the independent classes, we outperform a benchmark of an equivalent network with a Softmax head, obtaining increased accuracy for sample sizes smaller than 12 and increased weighted F1 score for 3 imbalanced class profiles in that sample range. This novel method enables new classes to be added to a system with only access to a few annotated images of the new class.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationJohnston P, Nogueira K & Swingler K (2023) GMM-IL: Image Classification Using Incrementally Learnt, Independent Probabilistic Models for Small Sample Sizes. <i>IEEE Access</i>, 11, pp. 25492-25501. https://doi.org/10.1109/access.2023.3255795en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectTask analysisen_UK
dc.subjectVisualizationen_UK
dc.subjectImage classificationen_UK
dc.subjectProbabilistic logicen_UK
dc.subjectNeural networksen_UK
dc.subjectStatisticsen_UK
dc.subjectGaussian mixture modelen_UK
dc.titleGMM-IL: Image Classification Using Incrementally Learnt, Independent Probabilistic Models for Small Sample Sizesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/access.2023.3255795en_UK
dc.citation.jtitleIEEE Accessen_UK
dc.citation.issn2169-3536en_UK
dc.citation.volume11en_UK
dc.citation.spage25492en_UK
dc.citation.epage25501en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailkevin.swingler@stir.ac.uken_UK
dc.citation.date19/03/2023en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000953729700001en_UK
dc.identifier.scopusid2-s2.0-85149854062en_UK
dc.identifier.wtid1890714en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.date.accepted2023-03-11en_UK
dcterms.dateAccepted2023-03-11en_UK
dc.date.filedepositdate2023-04-28en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorJohnston, Penny|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2023-04-28en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2023-04-28|en_UK
local.rioxx.filenameGMM-IL_Image_Classification_Using_Incrementally_Learnt_Independent_Probabilistic_Models_for_Small_Sample_Sizes.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2169-3536en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
GMM-IL_Image_Classification_Using_Incrementally_Learnt_Independent_Probabilistic_Models_for_Small_Sample_Sizes.pdfFulltext - Published Version1.24 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.