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ABSTRACT When deep-learning classifiers try to learn new classes through supervised learning, they
exhibit catastrophic forgetting issues. In this paper we propose the Gaussian Mixture Model - Incremental
Learner (GMM-IL), a novel two-stage architecture that couples unsupervised visual feature learning with
supervised probabilistic models to represent each class. The key novelty of GMM-IL is that each class is
learnt independently of the other classes. New classes can be incrementally learnt using a small set of
annotated images with no requirement to relearn data from existing classes. This enables the incremental
addition of classes to a model, that can be indexed by visual features and reasoned over based on perception.
Using Gaussian Mixture Models to represent the independent classes, we outperform a benchmark of an
equivalent network with a Softmax head, obtaining increased accuracy for sample sizes smaller than 12 and
increased weighted F1 score for 3 imbalanced class profiles in that sample range. This novel method enables
new classes to be added to a system with only access to a few annotated images of the new class.

INDEX TERMS Image classification, incremental learning, probabilistic models, small sample sizes, deep
learning.

I. INTRODUCTION
Incremental learning of new classes without forgetting old
classes is essential for real-world problems but extremely
challenging for modern deep learning methods. Current
incremental deep learners suffer from ‘catastrophic forget-
ting’ when after learning Class A, they are then required to
learn Class B. The issue occurs due to the sharing of a set
number of weights in the neural network. These are optimised
for Class A, however, in order to learn Class B the weights
must be altered, resulting in new knowledge overwriting
previous knowledge.

In order to overcome this catastrophic forgetting, we intro-
duce a universal function approximator, in the form of inde-
pendent Gaussian Mixture Models (GMMs). This enables
a separation of task between; learning the principal visual
features and learning the class definition. The GMMs also
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enable additional clustering and generative task functional-
ity. Taking our inspiration from humans, and reflecting the
identified tasks, a two stage pipeline is created where images
are first encoded to visual features, which are then used
during the modelling of independent classes. In stage one
as shown in Figure 1, the visual features are learnt by an
autoencoder using unlabelled images, this creates a latent
space representation. Then in stage two each probabilistic
model is independently trained to learn a class conditional
probability distribution over that latent space. New classes
can then be added without having to retrain the visual features
or relearn previously learnt classes. The probabilistic model
we use is a Gaussian Mixture Model. Using this architec-
ture we can translate, label to image or image to label via
the encoder and decoder created when training the Autoen-
coder. The independent class models can be enriched with
symbolic information and stored in an extensible knowledge
graph. This proposed neuro-symbolic architecture creates a
specific structure at four levels and each level is aligned
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FIGURE 1. Two stage training process. Comparison of autoencoder,
GMM-IL and benchmark model attributes.

with a human concept and supports open-ended learning
which combines the strengths of the symbolic approaches
with insights from machine learning. Figure 3 shows an
overview of the proposed architecture, the analogies between
humans and machines are shown below for each of the four
levels:

1) Human: Learns to see visual information.
Machine: Learns a latent space of visual features during
Autoencoder training.

2) Human: After seeing an object, are taught a name to
give it meaning.
Machine: After creating prior visual features, train a
probabilistic model to represent a class which gives that
group of training images a symbolic meaning.

3) Human: Learn a new object without needing to see
previous objects at the same time. Previously learnt
objects can be imagined.
Machine: Train a new class in the form of a prob-
abilistic model without requiring access to previous
training data. Previously learnt models can be sam-
pled and the resulting latent embeddings decoded into
images.

4) Human: Identify objects they are paying attention to in
their field of view in real-time.
Machine: Carry out object classification for the con-
tents of an image at inference time.

This paper is organised as follows: In Section II we
place our GMM-IL within the ontology of Incremental
Learners with associated discussion. We detail the proposed
GMM-IL in Section III, document our experimental setup in
Section IV, and subsequently report our results in Section V.
In Section VI we suggest possible improvements of this
method. Finally, we conclude in Section VII and comment
on possible future research directions.

A. CONTRIBUTIONS OF THIS PAPER
To the best of our knowledge, there is no similar
GMM-Incremental Learner in the literature. The value of our
proposed method is in the delivery of:

• A novel class representation, which couples transferred
visual feature learning with independent probabilistic
class learning and is easily extended to accommodate
new classes.

• Gaussian Mixture Models, which can be trained using
small sample sizes, decreasing both model training time
and the need for costly annotated images.

• A novel classifier that exhibits no catastrophic forgetting
issues due to the separation of the shared weights found
in the fully connected and softmax layers of standard
deep learning classifiers.

II. RELATED WORK
Incremental Learning aims at incrementally updating a
trained model, through tasks that learn new classes without
forgetting old classes [1], [2] [3]. Class Incremental Learning
is where a limited memory or no previously learned samples
are allowed during the training process. This limitation is
motivated by practical applications, such as storage and com-
puting constraints which prevent us from simply retraining
the entire model for each new task. It is worth mentioning,
that Incremental Learning is different from Transfer Learning
in that it also aims to have good performance in both old and
new tasks. Since the objective of an Incremental Learner is
to keep on learning new tasks, it should be evaluated based
on the classifier’s performance on the past and the present
tasks, in order to be confident about its behaviour in future
unseen tasks. Lopez-Paz and Ranzato [4] pointed out that
the ability of learners to transfer knowledge should also be
paid attention to, and accordingly proposed the concepts of
backward transfer (BWT, which is the influence that learning
a task has on the performance of previous tasks) and forward
transfer (FWT, which is the influence that learning a task has
on the performance on future tasks). These new metrics are
emerging which balance intransigence v forgetting [5].

A. INCREMENTAL LEARNING CHALLENGES
Catastrophic Forgetting (CF) identified by McCloskey and
Cohen [6] over 30 years ago is when new learning interferes
with the old learning, resulting in a reduced accuracy. Ideally,
keeping the network’s weights stable prevents previously
learned tasks from being forgotten, but too much stability
prevents the model from learning new tasks. The essence
of the stability-plasticity dilemma describes how to design
a balanced system that is simultaneously sensitive to but not
radically disrupted by new inputs and therefore can incremen-
tally learn [7].

B. ONTOLOGY OF INCREMENTAL LEARNERS
The standard Incremental Learner models use a neu-
ral network framework, which intrinsically creates several

VOLUME 11, 2023 25493



P. Johnston et al.: GMM-IL: Image Classification Using Incrementally Learnt, Independent Probabilistic Models

FIGURE 2. Ontology of Incremental Learners, placement of GMM-IL in
categories taken and adapted from Liu et al [8]. The models shown are
the most cited according to Liu et al (*) or we have mentioned it in the
related work. Model References: LwF [9], Incremental classifier and
representation learning (iCaRL) [10], Memory Replay GANs (MeRGAN) [8],
Elastic Weight Consolidation (EWC) [11], Memory Aware Synapses:
Learning What (not) to forget. (MAS) [12], Knowledge transfer in deep
block-modular neural networks. (B-MNN) [13], Progressive Neural
Networks (PNN) [14], Progress & Compress (P&C) [15], Residual continual
learning. (ResCL) [16], Lifelong learning of spatiotemporal
representations with dual-memory recurrent self-organisation. (GDM)
[17], Fearnet: Brain Inspired Model for Incremental Learning. (FearNet)
[18], GMM-IL: Gaussian Mixture Model Incremental Learner. (GMM-IL).

challenges such as; catastrophic forgetting, memory limi-
tation and concept drift. The Ontology we adopt can be
seen in Figure 2 which has been adapted from a Taxonomy
by Lui et al [8] and selected due to its structural categories.
Other useful surveys and ontologies related to this field
are [1], [3], [19], [20] and [21]. We reflect where GMM-IL
should be placed based on its structure within this context.
The three current categories specified to overcome Incre-
mental Learning issues are:(1) Parameter Regularisation; (2)
Knowledge Distillation; and (3) Dynamic Architecture.

Parameter Regularisation based methods utilise regularisa-
tion techniques such as constraining the update of important
parameters, dropout and early stopping. These are all aimed
at retaining previous task knowledge. Knowledge distillation
methods distil knowledge from an old model into the current
model. The various ways this is carried out are by; (1) retain-
ing old samples i.e. Incremental classifier and representation
learning (iCaRL) [10], (2) without using old samples and (3)
generating old samples. With the addition of new tasks, most
dynamic architecture methods flexibly adjust the network
structure.

In the GMM-IL method, visual feature knowledge is rep-
resented in a static latent space, and the symbolic knowl-
edge does not depend on any shared weights, so it does not
require parameter regularisation. Whilst visual information is

distilled into the latent space, this only needs to be done once
during classifier initialisation. There is no need to manipulate
or save old training samples in the form of exemplars during
the incremental training of tasks. For these reasons GMM-IL
would belong in the Dynamic Architecture category.

Dynamic Architecture strategies include; (1) expansion,
(2) progress and compress (P&C) and (3) dual mem-
ory (D-M) architectures. Black-Modular neural networks
(B-MNN) [13], Progressive neural networks (PNN) [14] both
augment the existing neural net with a ‘piggy-back’ neural net
throughout the structure which gets trained on the new task.
Not to be confusedwith fine tuningwhich adds one additional
layer to a frozen memory. The main disadvantage of this
approach is that the amount of parameters is exponentially
proportional to the number of learned tasks. Progress and
Compress (P&C) architectures maintain a constant number
of parameters and consist of two parts, a knowledge base
and the active column. The compression phase extracts the
knowledge learned in the previous expansion phase to the
knowledge base, and uses the Elastic Weight Consolidation
(EWC) [11] strategy to protect the previously learned knowl-
edge. In the expansion phase, the learning of new tasks reuses
the characteristics of the knowledge base through lateral
connections. The training approach alternates to limit expan-
sion of the model while completing knowledge retention.
These methods have limitations in scalability when it comes
to multi-task incremental learning scenarios. Dual memory
architectures are based on complementary learning systems
(CLS) theory [22], [23]. The hippocampus system and the
neocortex system balance the fast learning and slow learning
processes. Therefore, the general dual memory architecture
includes long and short-term memory. The former is used
for memorising past learning experiences and the later for
learning current tasks. Growing Dual-Memory (GDM) [17]
considers the impact of continuous data over time on incre-
mental learning.

Whilst the memory is expanded, each symbolic probabilis-
tic model is small in size and expands at a rate of one model
per learnt class. A compress and expand strategy is used,
but it fulfils a very different function. The compress is for
the visual features and the expand is in the form of building
symbolic definitions. GMM-IL does have a dual memory
in the form of visual features held separately to symbolic
definitions. We justify the creation of a new category called,
‘Hybrid Architecture’ by the fact that our proposed architec-
ture does not solely use a neural net. This is created for future
Incremental Learners that capture the benefits of neural nets
and combine themwith other models such as the probabilistic
models in GMM-IL. Following the trend within the ontology
we add a structural sub category called, ‘Visual Features &
Probabilistic Models’, this reflects our separate visual and
symbolic structure that delivers system stability and flexibil-
ity. We name our classifier ‘GMM-IL : GMM Incremental
Learner’, which identifies GaussianMixtureModels to be the
type of probabilistic model used.
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FIGURE 3. GMM-IL : Incrementally learnt, Independent probabilistic class
models. (1) Autoencoder model,(2) Probabilistic model, (3) Classifier,
(4) Classification logic.

III. METHOD
Our aim is to classify each visual concept using incremen-
tal learning, trained on small sample sizes using a hybrid
architecture. The proposed architecture is modular in nature,
enabling drop-in replacements for the autoencoder and prob-
ability models. A description of the selection and training of
these models can be found in Section IV-E.

The four levels and their interactions are shown in Figure 3,
from the bottom up they are:

1) An Autoencoder Model trained once on a large cor-
pus of unlabelled data, enabling generalised useful
visual features to be extracted from the image corpus.
Detailed in Section III-A.

2) Independent Probabilistic Modelswhich form the class
definition, independently trained on a small number of
visual features. Visual features are a result of encoding
the associated class images. Detailed in Section III-B.

3) A Classifier comprised of a set of learnt Probabilis-
tic Models which can be added to as new class data
become available. Detailed in Section III-C.

4) Classification logic can be carried out across all the
probabilistic models to evaluate the likelihood that at
inference time, a specific image belongs to a class.
Detailed in Section III-D.

A. AUTOENCODER
The Autoencoder transforms an image from a high dimen-
sional space to a lower dimensional space for ease of manip-
ulation. The main premise is that unsupervised training

FIGURE 4. t-SNE Plot of Latent Space created through unsupervised
Autoencoder training on the full Fashion-MNIST dataset, coloured by
ground truth Class. Original feature number = 100.

initialises this encoder on a vast number of image samples in
a high compute environment. When encoding visual features,
we are not only interested in the autoencoder’s ability to
reconstruct the input image, but also on encoding a useful rep-
resentation. By useful we mean the representation is not task
specific, is spread throughout the latent space and contains
visual motifs at different scales. These attributes will enable
it to generalise well to unseen symbolic classes.We selected a
vanilla autoencoder since Chadebec and Vincent [24] carried
out a case study benchmark, where they presented and com-
pared 19 generative autoencoder models. They found that the
autoencoder which did not try to manipulate the latent space
in end-to-end training produced the highest classification
accuracy.

To aid intuition in Figure 4 we have visualised the latent
space for the Fashion-MNIST dataset. Each image was
encoded to a visual embedding with 100 features and then
using the t-SNE (t-distributed Stochastic Neighbour Embed-
ding) method [25] has been projected to 2 visual features so
that a 2D plot could be created. Note that no labels were
involved in the training of our latent space. This results in a
learnt structure of the most significant perceptual character-
istics of images which is not biased by any symbolic labels.
This enables the selected features to generalise well to future
unseen labels. The plot also shows how well the training
images have been split up in latent space purely based on their
visual features and human selection of the images. Once an
image has been encoded as visual features, the decoder can
be used on those visual features to reconstruct the original
image.

B. PROBABILISTIC MODEL
Once a visual feature latent space has been established,
we can build specific concepts on top. We do this by selecting
representative images for our concept, encoding those images
into visual features using the encoder from the autoencoder
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and then training a probabilistic model using those encodings.
The probabilistic model we selected is a Gaussian Mixture
Model (GMM) [26] which is a universal function approxi-
mator, in that given a sufficient number of components, it can
approximate any smooth function to arbitrary accuracy [27].
A Gaussian Mixture Model is a weighted sum of M compo-
nent Gaussian densities as given by equation (1),

p(x|λ) =

∑M

i=1
wig(x|µi, 6i) (1)

where the notation used is; µi for mean, 6i for covariance
matrix and λ to express the collection of all component
parameters λ = (wi, µi, 6i), which contains weights, means,
and covariance matrix respectively for all Gaussian compo-
nents. x is a D-dimension continuous-valued data vector (i.e.
visual features),wi, i = 1, . . . ,M , are the mixture weights,
and g(x|µi, 6i), i = 1, . . . ,M are the component Gaussian
densities. Each component density is a D-variate Gaussian
function of the form shown in equation (2),

g(x|µi, 6i) =
1

(2π )
D
2 |6i|

1
2

e−
1
2 (x−µi)T6−1

i (x−µi) (2)

with mean vector µi and covariance matrix 6i. The mix-
ture weights satisfy the constraint that

∑M
i=1 wi = 1. The

complete Gaussian mixture model is parameterised by the
mean vectors, covariance matrices and mixture weights from
all component densities. These parameters are collectively
represented by the notation,

λ = wi, µi, 6i i = 1, . . . ,M . (3)

There are several variants on the GMMshown in equation (3).
The covariance matrices,6i can be full rank or constrained to
be diagonal. Additionally, parameters can be shared, or tied,
among the Gaussian components. Each GMM is trained on
a dataset that represents a concept. The Maximum Likeli-
hood Estimation (MLE) for normal mixtures and Estimation
Maximisation (EM) algorithm [28] are used after setting
the training hyper-parameters. The GMM is initialised using
K-Means centroids for the first Estimation step. Using a grid
search we produce candidate GMMs from which we select
the model with the lowest Bayesian Information Criterion
(BIC) validation score (to prevent over-fitting) to represent
that concept.

Each Class GMM is comprised of a number of compo-
nents each with a mean and co-variance. The diagonal of the
co-variance gives the variance of the component and the rest
of the matrix describes the relationship between each of the
features dependent on the component type. Figure 5 illus-
trates a reduced dimensional Gaussian Mixture Model with
2 components fitting bivariate distribution, with respective
probability density distributions in shared axes for the Ankle
Boot Class in the data.

C. CLASSIFIER
Once the probabilistic model for one class has been learnt, the
next one can be incrementally learnt by simply training it and

FIGURE 5. Gaussian mixture model with 2 components fitting bivariate
distribution, with respective probability density distributions in shared
axes for Ankle Boot Class.

adding it to our set of GMMs in the classifier. This requires
only the training data for the current class being learned and
none of the training data for previous classes. Also, for the
classifier to forget a class, it is as simple as removing the
probabilistic class from the classifier set.

In order to help with the intuition of a classifier com-
prised of a set of GMMs used for classification, we have
built 10 GMMs based on a 2 feature encoder, this then enables
us to create a 2D visualisation as shown in Figure 6. This map
shows where individual GMM component distributions are,
in the form of their GMM component mean values (stars) and
co-variance contours (ellipses). We generate 2500 values for
feature 1 & 2 which represent encoded images, they cover
our space and generate a map of what the predicted classifi-
cation will be at each of these points, based on a maximum
likelihood score. Only a few classes are shown so that the
means and co-variances are easier to see. Classes that are
visually similar will have similar GMMs, leading to reduced
discriminatory power.

D. CLASSIFICATION LOGIC
At inference time all the class likelihoods are evaluated for
the GMMs in the classifier and the class with the maximum
likelihood score is selected as the assigned classification.
A pairwise GMM distance can be calculated which gives
an indication of how similar the GMM representations are,
and hence the extent of the classifiers discriminatory power.
This was tested by creating a pairwise distance matrix for the
Fashion-MNIST dataset, using the Jensen-Shannon method,
then correlating it with the confusion matrix created at infer-
ence time. The resulting Spearman correlation coefficient was
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FIGURE 6. Map of the predicted classification for a 2 feature image
encoder, overlaid with 7 GMMs and their component means (stars) and
covariance contours (ellipses) on the Fashion-MNIST dataset.

0.78 with a p-value of 0, which indicated that the similarity
matrix could predict the level of classifier errors to some
extent.

IV. EXPERIMENT SETUP
A. HARDWARE AND SOFTWARE
All deep learning-based models were implemented using
TensorFlow [29] Version 2.7.0. The code was written in
Jupyter notebooks with Python Version 3.7.3. and CUDA
version 11.2. All experiments conducted here were per-
formed on a 64-bit Intel(R) Xeon(R) Gold 6130 CPU
@ 2.10GHz workstation with 64 CPU cores and 768GB
RAM. NVIDIA® GeForce (driver version 495.44) with
4*GTX1080Ti each with 11GB RAM. Debian version
10.12 was used as the operating system. The scikit-learn and
pycm [30] library were used for Metrics.

B. DATASETS
The performance of our model and the benchmark model are
evaluated on the public dataset Fashion-MNIST [31] which
contains gray scale images of 10 clothing categories. The
official training dataset was split into, 80% creating a new
training dataset (48K) and 20% creating a new validation
dataset (12K). 100% of the official test dataset (10K) was
used for our test set. Within each dataset all classes contained
the same number of images, where this changes in our experi-
ments it is noted in that experiments section. We use the same
dataset for 2 purposes:

1) Dataset 1 - Autoencoder Model Training: To train
the Autoencoder model to create Visual Features. The
premise is that the Autoencoder model will learn
through unsupervised training on the largest image
dataset possible, using vast computer power in a big
data paradigm. That once carried out the resulting
encoder/decoder will then be used on all vision tasks
without alteration (frozen weights). However, for the

experiments in this paper the dataset above is used to
investigate if the classifier can learn unseen classes
without that class having being used during the training
of the Autoencoder.

2) Dataset 2 - Probabilistic Model Training: To train the
GMMs to create independent symbolic class represen-
tations. It is this dataset that is manipulated to investi-
gate the impact on the classifier accuracy for; sample
size, imbalanced classes and incrementally learnt class
definitions.

C. EVALUATION METRICS
Quantitativemetrics of accuracy score, weighted F1 score and
Cohen Kappa are reported. The predictive accuracy metric
measures the difference between the imputed values and
their corresponding actual values. The weighted F1 score is
used since class imbalance is investigated. Since multi class
classification is carried out, Cohen’s kappa is used to measure
the agreement between GMMs which each classify N images
into C mutually exclusive classes.

D. DATA CONSISTENCY
When an experiment contains a suite of increasing or decreas-
ing sample sizes, a dataset is managed to contain the same
images as previously used to ensure experimental consis-
tency. All reported test results are carried out using 100%
of the held out test dataset unless otherwise stated in an
experiment.

E. MODEL SETUP
1) AUTOENCODER
The encoder has two convolution layers (followed by ReLU
activations [32] ) with 3 × 3 filters, applied with a stride of
2 and padding to maintain the same size image. From layer to
layer, the number of filters (initially, 32) is doubled. The out-
put of the last convolution layer is flattened and then mapped
into a configurable dense layer which creates the features
of our latent space. The decoder mirrors the encoder, using
convolutional transpose operators [33]. The full architecture
is shown in Figure 7.

The autoencoder uses Adam [34] for optimisation. The
learning rate is reduced according to a cosine function [35].
The following hyper-parameters to define the search space
were defined through several experiments, a base learning
rate of 0.003, and a final learning rate of 0.001, a maximum
number of 20 updates, 5 warm up steps and trained with
40 epochs. The batch size was set to 50. Training was carried
out using unannotated images using a Mean Squared Error
loss.

We trained the Autoencoder as above, then holding all
values the same except the latent dimension which we incre-
mentally increased by steps of 10 features. We selected a
size of 100 for the latent dimension since the larger the
feature embedding the better the image reconstruction, mea-
sured by the minimum loss achieved. We required a feature
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FIGURE 7. Autoencoder - a convolutional autoencoder containing the
encoder to transform an image into a latent visual feature embedding
with 100 features. Also the decoder which transforms a latent visual
feature embedding back into an image.

representation that can be decoded into a good image rep-
resentation whilst still compressing the data to enable easier
manipulation.

2) PROBABILISTIC MODEL
The probabilistic model is a Gaussian Mixture Model
(GMM). A GMM was created for each symbolic class using
encoded training images (100% dataset unless otherwise
stated in an experiment). We evaluated all the combinations
of the following hyper parameters; i) Number of mixture
components: 1 to 5 inclusive, ii) Covariance type: Tied, Diag-
onal, Spherical & Full, and, iii) Non-negative regularization:
1.0e-2, 1.0e-3, 1.0e-4 and 1.0e-5. This resulted in 80 potential
models per class. During GMM model creation, occasion-
ally when regularisation was low the maximum likelihood
estimation (MLE) for normal mixtures did not converge due
to singularities or degeneracy. Any models which did not
converge were automatically eliminated from our potential
selection. The selected GMM had the minimum validation
BIC score.

3) GMM-IL CLASSIFIER (GMMs)
Each learnt GMM was added to the set of GMMs to form
the classifier GMMs. Table 1 shows the hyper parameters of
the baseline set of GMMs. See Table 2 for this classifiers
accuracy results.

4) BENCHMARK CLASSIFIER (SOFTMAX)
Our benchmark classifier (Softmax) is comprised of a deep
learning network consisting of the same frozen encoder
model, plus a dense layer with a Softmax activation. The
hyper parameters were set to the same as described for the
Autoencoder (see Section IV-E1).

V. RESULTS AND ANALYSIS
These experiments investigate the difference in performance
between a multiple GMM head (GMMs) and the bench-
mark method of a single Softmax head (Softmax). Both clas-

TABLE 1. GMM hyper parameters for set of GMMs in baseline classifier.

TABLE 2. Classifier Accuracy for balanced classes using 100% Training,
Validation and Testing datasets. Acc: Accuracy, F1: Weighted F1 Score, CK:
Cohen Kappa.

sifiers use the same encoder with frozen weights trained
on ten classes for all experiments except the experiment
(Section V-D) where it was trained on six classes. The experi-
ment (Section V-A) establishes a reference baseline. The next
experiment evaluates the classifiers accuracy when using;
small sample sizes during training (Section V-B) and when
the sample size is imbalanced across classes (Section V-C).
The experiment found in Section V-D reports the classifiers
results when incrementally learning pairwise unseen classes.

A. CLASSIFIER BASELINE
The two classifiers were tested after building the models as
described in Section IV-E3. The results for training, valida-
tion and testing are shown in Table 2. Softmax outperforms
GMMs when 100% of each dataset is used and all classes are
balanced.

B. SMALL SAMPLE SIZES
Focusing on small sample sizes a range of 5 to 20 (inclu-
sive) samples are used. Stepping through each sample size
all GMM models for both classifiers are retrained using the
initial hyper parameter settings. As can be seen in Figure 8.
GMMs performwith higher accuracy than Softmax for sample
sizes smaller than 12.

C. IMBALANCED CLASSES
In the classification problem field, the scenario of imbalanced
classes [36] appears when the numbers of samples that rep-
resent the different classes are very different. The minority
classes are usually the most important concepts to be learnt,
since they represent rare cases or because the data acquisition
of these examples is costly. In this work three imbalanced
ratio profiles are created and the classifiers weighted F1 Score
are reported. The range 5 to 15 is selected, as in the ‘Small
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FIGURE 8. Classifier test accuracy for a training sample size of 5 to
20 inclusive.

Sample Sizes’ experiment it was shown to be a range of inter-
est. Using 5 as low and 15 as high 3 imbalanced class datasets
were created. Imbalances that were covered are; (1) Extreme
ratio difference of 1 class high and 9 classes low. (2) A 50:50
ratio difference of 5 class high, 5 class low and, (3) A stepped
profile, Classes start at 5 samples and increment 1 sample
until 14 samples. Both classifiers were retrained using the
initial hyper parameters, GMM models where then fitted
to new sample sizes based on the imbalanced experiment
profile. Each Experiment was repeated 10 times with the class
numbers rotating through the experiment profile. Figure 9
shows the mean accuracy and 95% confidence intervals per
experiment and classifier type. Experiment 1,2 and 3 had p
values of 0.000, 0.001 and 0.018 respectively. In all three
experiments the (GMM) outperformed the (Softmax) when
trained on sample sizes under 15.

D. CLASS INCREMENTAL LEARNING
Softmax classifiers learn all classes at once using all the
training data. They do not perform as accurately when they
are required to learn classes over time and have no access to
previous training data.

We follow the benchmark method taken from Kolouri
et al [37], and DeepMind, Google Research [38] who used
the Split MNIST dataset to learn consecutive pairs. For our
dataset this is pairs of clothes e.g., Pair 1: T-Shirt,Trousers,
Pair 2: PullOver, Dress, Pair 3: Coat, Sandal, Pair 4: Shirt,
Sneaker, Pair 5: Bag, Ankle Boot. We then make the follow-
ing adjustments. We combine the first 3 pairs, which makes
6 classes trained in Task 1. The Autoencoder model is trained
first using these 6 classes and the resulting encoder is frozen.
Then, the 6 GMM Models are trained using their encoded
images. This frozen encoder is then used for further tasks
with just the GMM Models been trained. Pair 4 are used for
Task 2 and Pair 5 used for Task 3. The reason Tasks contain
2 classes is to enable the Softmax to classify without having

FIGURE 9. Classifier Weighted F1 Score for 3 Imbalanced Training Dataset
Profiles. (Exp_1: 1 class n15 & 9 classes n5), (Exp_2: 5 classes n5 &
5 classes n15), (Exp_3: Classes start at 5 samples and increment to
14 samples.), Classes rotated 10 times. Mean and 95% confidence
intervals shown.

access to prior training data. For clarification the 3 Tasks were
configured as follows:

1) Task 1 established the accuracy when the encoder was
trained on 6 classes, the classifier heads (GMM and
Softmax) were tested on 6 classes using 100% datasets.
The classification was assigned to the class with the
greatest probability/likelihood.

2) Task2 established the accuracy when the classifiers
were trained as per Task1 with 2 further classes,
the classifier heads (GMM and Softmax) were tested
on 8 classes using 100% datasets. The classification
was assigned to the class with the greatest probabil-
ity/likelihood.

3) Task3 established the accuracy when the classifiers
were trained as per Task2 with 2 further classes, the
classifier heads (GMM and Softmax) were tested on
all 10 classes using 100% datasets. The classification
was assigned to the class with the greatest probabil-
ity/likelihood.

Task1, Task2 and Task3 were repeated 10 times as the classes
were rotated, the mean and 95% confidence values were cal-
culated across all 10 combinations per classifier type. From
the results shown in Figure 10 it can be seen that initially
the Softmax is more accurate than the GMMs. However, after
each Incremental Task, the Softmax accuracy decreases sig-
nificantly more than the GMM. This shows the GMMs have
a greater ability to retain class definitions than the Softmax.

VI. DISCUSSION
An architecture was created which enables transferred visual
learning and the incremental addition of class definitions in
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FIGURE 10. Classifiers Incrementally Learning Three Tasks.

the form of probabilistic models. The visual learning carried
out used a smaller sample size than would ultimately be used
to enable us to control the content of the visual features
and verify that unseen classes could be learnt. This classi-
fier’s accuracy could be improved by making the following
amendments.

• Autoencoder - Our main premise is that this model’s
accuracy is dependent on the quality of the latent space
created by the autoencoder, by using a state of the art
autoencoder the granularity and quality of the visual
features will be improved and hence the discriminatory
power of the classifier increased.

• Gaussian Mixture Models - Améndola et al [39] state
that there is the possibility of more modes than means
when Gaussians are combined. Further investigation
needs to be carried out to optimise the accuracy of the
GMM likelihood landscape for a set of GMMs.

VII. CONCLUSION AND FUTURE WORK
In conclusion, the proposed method creates a useful class
representation where visual features are learnt using unsuper-
vised training. Using these, independent probabilistic class
definitions are trained which incorporate uncertainty. These
representations are used within a classifier and benchmarked
with an equivalent Softmax classifier which uses class rel-
ative probability. GMM-IL is found to be more accurate for
sample sizes smaller than 12 images andmore robust for three
imbalanced class profiles in the same sample range. GMM-
IL incrementally learns class definitions with no catastrophic
forgetting issues which the Softmax benchmark exhibits.
In conclusion, for a learning environment where only small
sample sizes of new classes are available, this model shows
good potential as a classifier. This paper describes the

creation of symbolic definitions for items, this could be
expanded to define descriptive adjectives, normal verbs and
affordances through the training of GMMs on appropriate
datasets. Once these symbolic definitions exist they could
also be used to aid reasoning in Knowledge Graphs.
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