Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34960
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMedeiros, Thaís Pereira deen_UK
dc.contributor.authorMorellato, Leonor Patrícia Cerdeiraen_UK
dc.contributor.authorSilva, Thiago Sanna Freireen_UK
dc.date.accessioned2023-03-24T01:10:08Z-
dc.date.available2023-03-24T01:10:08Z-
dc.date.issued2023en_UK
dc.identifier.other1083328en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34960-
dc.description.abstractModern UAS (Unmanned Aerial Vehicles) or just drones have emerged with the primary goal of producing maps and imagery with extremely high spatial resolution. The refined information provides a good opportunity to quantify the distribution of vegetation across heterogeneous landscapes, revealing an important strategy for biodiversity conservation. We investigate whether computer vision and machine learning techniques (Object-Based Image Analysis—OBIA method, associated with Random Forest classifier) are effective to classify heterogeneous vegetation arising from ultrahigh-resolution data generated by UAS images. We focus our fieldwork in a highly diverse, seasonally dry, complex mountaintop vegetation system, the campo rupestre or rupestrian grassland, located at Serra do Cipó, Espinhaço Range, Southeastern Brazil. According to our results, all classifications received general accuracy above 0.95, indicating that the methodological approach enabled the identification of subtle variations in species composition, the capture of detailed vegetation and landscape features, and the recognition of vegetation types’ phenophases. Therefore, our study demonstrated that the machine learning approach and combination between OBIA method and Random Forest classifier, generated extremely high accuracy classification, reducing the misclassified pixels, and providing valuable data for the classification of complex vegetation systems such as the campo rupestre mountaintop grassland.en_UK
dc.language.isoenen_UK
dc.publisherFrontiers Media SAen_UK
dc.relationMedeiros TPd, Morellato LPC & Silva TSF (2023) Spatial distribution and temporal variation of tropical mountaintop vegetation through images obtained by drones. <i>Frontiers in Environmental Science</i>, 11, Art. No.: 1083328. https://doi.org/10.3389/fenvs.2023.1083328en_UK
dc.rights© 2023 Medeiros, Morellato and Silva. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectUASen_UK
dc.subjectunmanned aerial systemen_UK
dc.subjectmachine learningen_UK
dc.subjectrandom foresten_UK
dc.subjectheterogeneous vegetationen_UK
dc.subjectrupestrian grasslanden_UK
dc.subjectphenologyen_UK
dc.titleSpatial distribution and temporal variation of tropical mountaintop vegetation through images obtained by dronesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3389/fenvs.2023.1083328en_UK
dc.citation.jtitleFrontiers in Environmental Scienceen_UK
dc.citation.issn2296-665Xen_UK
dc.citation.volume11en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.author.emailthiago.sf.silva@stir.ac.uken_UK
dc.citation.date10/02/2023en_UK
dc.contributor.affiliationSao Paulo State University (Universidade Estadual Paulista)en_UK
dc.contributor.affiliationSao Paulo State University (Universidade Estadual Paulista)en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.wtid1882550en_UK
dc.contributor.orcid0000-0001-8174-0489en_UK
dc.date.accepted2023-01-26en_UK
dcterms.dateAccepted2023-01-26en_UK
dc.date.filedepositdate2023-03-08en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMedeiros, Thaís Pereira de|en_UK
local.rioxx.authorMorellato, Leonor Patrícia Cerdeira|en_UK
local.rioxx.authorSilva, Thiago Sanna Freire|0000-0001-8174-0489en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2023-03-08en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2023-03-08|en_UK
local.rioxx.filenamefenvs-11-1083328.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2296-665Xen_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
fenvs-11-1083328.pdfFulltext - Published Version5.32 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.