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Modern UAS (Unmanned Aerial Vehicles) or just drones have emerged with the
primary goal of producing maps and imagery with extremely high spatial resolution.
The refined information provides a good opportunity to quantify the distribution of
vegetation across heterogeneous landscapes, revealing an important strategy for
biodiversity conservation. We investigate whether computer vision and machine
learning techniques (Object-Based Image Analysis—OBIA method, associated with
Random Forest classifier) are effective to classify heterogeneous vegetation arising
from ultrahigh-resolution data generated by UAS images. We focus our fieldwork in a
highly diverse, seasonally dry, complex mountaintop vegetation system, the campo
rupestre or rupestrian grassland, located at Serra do Cipó, Espinhaço Range,
Southeastern Brazil. According to our results, all classifications received general
accuracy above 0.95, indicating that the methodological approach enabled the
identification of subtle variations in species composition, the capture of detailed
vegetation and landscape features, and the recognition of vegetation types’
phenophases. Therefore, our study demonstrated that the machine learning
approach and combination between OBIA method and Random Forest classifier,
generated extremely high accuracy classification, reducing the misclassified pixels,
and providing valuable data for the classification of complex vegetation systems such
as the campo rupestre mountaintop grassland.
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1 Introduction

Monitoring of grassland resources is important to guarantee the regional grassland
conservation, management, and sustainable development (Fernandes et al., 2020). Through
the development of science and new technologies the grassland ecosystemsmonitoring has been
increasingly enriched (Lyu et al., 2020; 2022) and canmake a unique contribution to the ecology
and restoration this forgotten ecosystems. Traditional satellite remote sensing technology is a
relevant means of monitoring regional grassland ecosystems, but the images obtained by
satellite remote sensing tend to have low spatial resolution and the revisit cycle is too long
(Peciña et al., 2019; Balasubramanian et al., 2020).
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Recent developments for mapping and assessing ecosystem
functions and services require information at a very detailed spatial
resolution (Villoslada et al., 2020). In this sense, Unmanned Aerial
Systems (UAS), also known as Unmanned Aerial Vehicles (UAV),
Remotely Piloted Aerial Systems (RPAS), or simply “drones”, have
advanced rapidly to satisfy these needs, and have been increasingly
used for ecology, environmental and grassland studies (Anderson and
Gaston, 2013; Colomina and Molina, 2014; Villoslada et al., 2020).

Modern UAS enables the production of maps and imagery with
extremely high spatial resolution and can be a low-cost tool for
monitoring vegetation at the landscape scale (Whitehead and
Hugenholtz, 2014; Xie, Zhang, and Welsh, 2015; Wang et al.,
2019a; Sun et al., 2021). With pixel-size in the order of centimeters
(or even millimeters), UAS imagery has been used to extract structural
and functional properties of environments, ranging from individuals
to ecosystems (Anderson and Gaston, 2013; Singh and Frazier, 2018;
Valbuena et al., 2020; Sun et al., 2021). The refined information
provides a good opportunity to obtain and quantify the
distribution of vegetation across heterogeneous landscapes,
capturing variations in plant community cover and revealing an
important strategy for biodiversity conservation (Baena, Boyd, and
Moat, 2018; Wang et al., 2019a; Díaz-Delgado, Cazacu, and
Adamescu, 2019; Prentice et al., 2021).

UAS can also offer very good temporal resolution (Nex and
Remondino, 2013; Kampen et al., 2019) and have become more
affordable and capable of offering autonomous and flexible
functionalities, such as minimization of user intervention, including
the ability to plan and conduct surveys to collect aerial photography
(Hassanalian and Abdelkefi, 2017; Hamylton et al., 2020). Also, UAS
are easy to operate and remotely controlled, allowing the users to go
into areas that are inaccessible to humans (Feng et al., 2021).
Moreover, UAS remote sensing systems are composed of at least
five components: [1] Platform system; [2] Sensor system; [3] Ground
control and data transmission system; [4] Data processing system, and
[5] Operators (Sun et al., 2017).

Due to advantages in flexibility and high temporal and spatial
resolution, UAS remote sensing technology has been applied in many
fields, e.g., geography, ecology, and environmental science (Adao et al.,
2017; Reis et al., 2019). In the case of grassland studies with UAS
imagery it is possible to capture spectral differences between different
vegetation species and effectively improve the accuracy of species
identification on smaller vegetation units, providing a technical
support for the fine monitoring of grassland vegetation species
composition (Schmidt et al., 2017). Another important application
of UAS imagery is in grassland degradation monitoring, including
studies concerning degradation of total vegetation (biomass and
productivity), degradation of vegetation structure (reduction of
plant height and increase of weeds), processes that pose several
challenges to grassland management and sustainable development
(Lyu et al., 2020). The hyperspectral and hyperspatial remote sensing
technology can further obtain more-in-depth data information and
help in monitoring of grassland vegetation structure (Lyu et al., 2022).

In addition, besides the affordable RGB cameras, a wide variety of
vegetation mapping sensors can be operated from a UAS platform,
including multispectral sensors focused on red and near-infrared
wavebands, hyperspectral sensors that detect reflectance at many
wavelengths, and, the range of LiDAR sensors (light detection and
ranging), indicated to study the degree of vegetative ground cover and
characterize canopy structure (Colomina andMolina, 2014; Hamylton

et al., 2020). RGB cameras are most used due, mainly, to their low cost
and ease of use (Pichon et al., 2019), while multispectral sensors can
better evaluate plant health and stress status, due to their highest
spectral resolution (Wang et al., 2019b). Finally, as another advantage
of UAS, ultra-low altitude flying can reduce the effect of clouds on
imagery and thereby improve the data quality (Watts, Ambrosia, and
Hinkley, 2012; Sun et al., 2021).

One of the applications of Remote Sensing is the use of imagery to
classify and delineate different objects and land cover types on the
Earth’s surface, a process that involves collecting field data from a
series of samples as an input for training a classification model (Zou
and Greenberg, 2019; Prentice et al., 2021). Classification in Remote
Sensing involves the categorization of response functions recorded in
imagery as representations of real-world objects, according to their
spectral similarity to the initial values overlapping the samples, which
can provide detailed information about land-cover, specifically in a
mixed forest-grassland (Corbane et al., 2015; Cullum et al., 2016;
Hamylton et al., 2020; Zhang et al., 2021).

In the context of climate change and rapid transformation of
grassland environment due to anthropogenic activities, mainly during
the lasted four decades (Fernandes et al., 2020; Buisson et al., 2022),
the grassland classification is crucial for its management. The
identification of grassland classes provides the basis for the
protection of grassland resources and for the reconstruction and
restoration of a grassland ecological environment (Meng et al., 2022).

Conventional platforms are characterized by lack of spatial detail
to solve and classify fine landscape features (individual trees and
shrubs), requiring large amounts of cost and resources (Wang et al.,
2019a; Meng et al., 2022). In this regard, hyperspatial tools, such as
UAS imagery, have been successfully applied in many fine-scale
classification studies, allowing the identification of subtle variations
in species composition, and capturing detailed vegetation and
landscape features, for instance, shadows, stems, and canopy gaps
(Laliberte and Rango, 2013). According to a study performed by
Christian and Christiane (2014), data collected from UAS can
capture more information about environment composition and
structure. Thus, using UAS high-resolution cameras is one of the
most preferred methods to classify land cover in a mixed savannas-
grassland ecosystem (Zhang et al., 2021).

However, there are still several challenges in using this strategy,
including the development of appropriate procedures to manage and
extract information from high-volume and hyperspatial resolution
data. One of the challenges is how to deal with shadows cast by trees,
high intra-class spectral variation, and high inter-class spectral
heterogeneity (Lu and Weng, 2007; Lu and He, 2017; Berra,
Gaulton, and Barr, 2019).

The classification process can be divided into unsupervised and
supervised classification algorithms, revealing it as a crucial tool to
achieve interpretable results. Unsupervised classification techniques
group pixels or segments according to their similarity using a variety of
different algorithms. On the other hand, supervised classification
requires the use of training sample areas, in other words, spectral
signatures of the objects under study (Schafer et al., 2016; Nogueira
et al., 2019).

The application of conventional classification techniques on
hyperspatial imagery can result in the misclassification of pixels
with identical spectral responses to different classes, causing an
effect known as “salt and pepper”. Furthermore, traditional
supervised classifiers assume the normal distribution of remote
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sensing datasets (Jensen, 2015), but these datasets can deal with
complex and non-linear relations, thus conventional classification
algorithms do not fit to classify the ultrahigh remote sensing data
(Thessen, 2016; Oddi et al., 2019).

Some strategies have been developed to solve these problems: A.
Inclusion of texture features in a classifier; B. Object-Based Image
Analysis (OBIA), in which an image is pre-segmented into polygons;
C. Using computer vision and machine learning techniques, such as
random forest, support vector machine and convolutional neural
networks (Nguyen et al., 2019; Zou and Greenberg, 2019). In
addition, the accuracy of vegetation identification will depend on
four factors: spatial resolution, spectral resolution, habitat complexity,
and classification algorithms.

Object-Based Image Analysis (OBIA), more specifically
Geographic Object-Based Image Analysis (GEOBIA), has provided
important methodological refinements for high-resolution image
classification, having advantages over traditional pixel-based
methods, and is considered a superior classification technique (Liu
and Abd-Elrahman, 2018; Dujon and Schofield, 2019). GEOBIA
methods are based on pre-clustering the image pixel into
homogeneous objects (regions, clusters), according to specific
spectral characteristics (features, color, texture), and shape
characteristics (Blaschke, 2010).

Machine Learning (ML) approach, one of the most popular
latest technologies in the fourth industrial revolution (Sarker,
2021), has been developed as a response to the rigidity of many
other computer programs in comparison with the world’s infinite
versatility. Emerged within the field of artificial intelligence, ML
aims to deal with complex data and to learn without being explicitly
programmed (Mahesh, 2020; Prentice et al., 2021). The data and
desired result are provided to a learning algorithm (a “learner”),
which then generates the algorithm that turns one into the other
(Dujon and Schofield, 2019; Hamylton et al., 2020). ML algorithms
are divided into four categories: Supervised learning, Unsupervised
learning, Semi-supervised learning, and Reinforcement learning.
In the case of Supervised learning (the category focused on the
research), the most common supervised tasks are the “classification
algorithms”, which separate the data, and the “regression models”,
which fit the data, but do not offer predictive capability (Sarker,
2021). The supervised learning technique, specifically the
classification process, has been successfully applied to sequential
RGB images from ground digital cameras focused on species
recognition, and in studies that involve ecology and Earth
sciences applications (Almeida et al., 2014; 2016; Thessen, 2016;
Maxwell, Warner, and Fang, 2018).

In ecology, the Random Forests algorithm is commonly used to
perform the supervised classification process, followed by maximum
likelihood classification, support vector machine, K-means clustering,
convolution neural networks, and thresholding (Dujon and Schofield,
2019). Random Forest (RF) is an ensemble learning technique based
on decision trees, which has higher accuracy when compared to
traditional methods, enabling the simultaneous classification of
features based on a set of training samples, making possible the
determination of the best performing explanatory variables
(Breiman, 2001).

Considering the advantages and challenges explained, the present
work aimed to answer the following questions: Are the machine
learning techniques effective to process the ultrahigh-resolution

data generated by UAS images? Is the OBIA an effective method
for classifying heterogeneous vegetation? Using a Random Forest
classifier, what is the better combination of parameters for
proposing a high quality of ultrahigh spatial resolution
classification? We focus our fieldwork on a highly diverse,
seasonally dry, complex mountaintop vegetation system, the campo
rupestre or rupestrian grassland, considered a vegetation mosaic or a
continental archipelago (Morellato and Silveira, 2018; Mattos et al.,
2019; Vasconcelos et al., 2020). The mosaic formed by the vegetation
types, from grasslands, and rocky outcrops to cerrado and forest
patches, poses a challenge to accurately classify campo rupestre
vegetation diversity at a landscape scale, a prime measure for the
conservation of this threatened ecosystem (Fernandes et al., 2018;
2020). This high diversity of vegetation types cannot be distinguished
in conventional imagery, like Sentinel-2 or even Planetscope imagery,
but in UAV imagery this is possible.

2 Materials and methods

2.1 Study area

The Espinhaço Mountain Range, in central Brazil, is a known
center of plant diversity with more than 5,000 recognized plant
species (Rapini et al., 2008; Silveira et al., 2016). The Southern
Espinhaço Range is recognized as a phytogeographic province,
having its type locality at the Serra do Cipó National Park
(Giulietti, Pirani, and Harley, 1997; Colli-Silva, Vasconcelos,
and Pirani, 2019), while Serra do Cipó comprises only c.a.
200 km2 (less than 5% of entire range), still hosts more than
one-third of Espinhaço’s total biodiversity. Among the
represented vegetation types, the region is known for its highly
heterogeneous campo rupestre (rupestrian grasslands) vegetation
(Mattos et al., 2019). Campo rupestre is a component of the
Cerrado floristic domain (Brazilian savanna), dominated by
grasslands and restricted to areas of shallow soil and rugged
topography above 900 m (Silveira et al., 2016; Morellato and
Silveira, 2018).

Campo rupestre is characterized by extremely high plant species
richness and endemism (Fernandes, 2016), which has been mostly
explained by long-term climatic stability, the so-called Old Climatic
Buffered Infertile Landscapes (OCBILS) (Silveira et al., 2016;
Morellato and Silveira, 2018). During the 18th and 19th
centuries, the Espinhaço Range and particularly Serra do Cipó
were impacted by human activities linked to gold and diamond
exploration, and with the decline of mineral deposits by the end of
the 19th century the main economic activity of the region has
switched towards tourism (Rapini et al., 2008; Fernandes et al.,
2018; 2020).

The climate in Serra do Cipó region is strongly seasonal, with a
dry and cold season from April to September, and a wet and warm
season from October to March. The mean total annual
precipitation is approximately 1,600 mm, and mean annual
temperatures are around 21°C (Le Stradic et al., 2018).
According to the Brazilian National Water Agency (Agência
Nacional de Águas, in Portuguese), the dry season has a
monthly rainfall of 10 mm or less, while in the wet season
monthly rainfall is around 230 mm.
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2.2 Drone imagery and field data collection

Drone image acquisition was done within the private
conservation area belonging to CEDRO Têxtil S.A. (located
between latitudes of 19°12′S and 19°34′S and, longitudes of
43°27′W and 43°38′W), contained within the Morro da Pedreira
Environmental Protection Area (Figure 1), locally named as Cedro
(Mattos et al., 2019).

Aerial photos were acquired using a fixed-wing UAS, which your
characteristics can be viewed in Table 1. Flight lines, number of
photos, and spatial resolution were automatically calculated based
on informed sensor size, focal length, the flying height of 120 m above
ground, and 80% overlap between consecutive flight lines. The aerial

imaging mission covered a core 800 × 800 m square area (64 ha),
yielding final orthomosaics with a nominal spatial resolution of 5 cm/
pixel. The area was imaged at monthly intervals from February 2016 to
February 2017, totaling 12 flights.

The resulting aerial photos were mosaicked and orthorectified
using the Pix4DMapper 3.1 Educational software (https://www.pix4d.
com/), using a proprietary implementation of the Structure from
Motion (SfM) algorithm. SfM is a computer vision technique
capable of extracting an individual’s reference points for automatic
alignment and positioning of aerial photos, then generating a
tridimensional point cloud, which can then be further transformed
into a Digital Surface Model (DSM), which is in turn used to produce
the resulting orthomosaic (Westoby et al., 2012).

FIGURE 1
The location of the Cedro study site, a private conservation area belonging to CEDRO Têxtil S.A., in the Serra do Cipó and within the Morro da Pedreira
Environmental Protection Area, where the imagery was performed.

TABLE 1 Description and characterization of all equipment (Camera, Firmware, and Flight) installed on the fixed-wing UAS.

Drone Camera Firmware Flight

Description Fixed-wing UAS, built by the
Brazilian company G-Drones

CANON SX260 RGB camera CHDK custom firmware was installed
on the camera

Pixhawk V1 autopilot board running
the ArduPlane 3.4 open source flight

controller software

Characteristics 190 cm wingspan, 2.5 kg, based on
the widely available Skywalker model

plane frame

12 megapixels (6.2 mm × 4.6 mm
sensor, 4,000 x 3,000 pixels) of

resolution and a focal length of 4.5 mm

The automated KAP - UAS script was
run within CHDK custom firmware,
for automatic interval triggering

during flight

The flight can be planned and
executed using the Mission Planner

Software

Reference link http://www.g-drones.com.br/
drones/

https://www.loja.canon.com.br/pt/
canonbr/

https://chdk.fandom.com http://ardupilot.org/plane/
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In July 2018, we performed a fieldwork in-person in Serra do Cipó
to collect georeferenced ground points, according to the predefined
mapping classes (see Classification section). At each sampling point,
the main vegetation/cover class was identified, and the location was
logged using a Garmin GPSMAP 64 s GPS receiver. These ground
points were used to support the sample collection process for each
spectral class.

2.3 Orthomosaic registration

Due to the low accuracy of embedded camera GPS information,
further manual co-registration was necessary to align the times series
of orthomosaics (Tsai and Lin, 2017). This step was performed on the
ENVI 5.0 software. We chose as reference image the best image in the
series in terms of brightness, and shading, as well as the closest
alignment to Google Maps™ aerial imagery, which corresponded to
the image acquired on 2016-09-25.

We then selected fifty Ground Control Points (GCPs), between the
reference image and each image to be co-registered, and then, applied
a second-order polynomial transformation with nearest neighbor pixel
resampling, using a standardized 5 cm/pixel grid. Estimating post-
registration accuracy, we selected further GCPs between the reference
image and a subsample of the imaged dates and then calculated
horizontal, vertical, and Euclidean distance displacement between

each image pair. The chosen dates for positional validation were
2016-02-23, 2016-05-22, 2016-08-16, and 2016-11-30.

2.4 Image classification

From the available drone image time series, we selected two dates,
2016-09-25 (dry season) and 2017-01-05 (wet season), which
represented different phenological stages of the vegetation (Le
Stradic et al., 2018). We then classified the two images separately,
as well as combined the stack of the two images.

The classification approach followed the usual framework of GEOBIA
methods, composed of image object generation, feature extraction, and
object classification (Blaschke, 2010).We generated image objects using the
Shepherd image segmentation algorithm implemented on free and open-
source Remote Sensing and GIS Software Library (RSGISLib), based on
K-means clustering and accessible through the Python programming
language (Bunting, Clewley, and Lucas, 2014). This algorithm takes the
following main parameters: NumClusters, MinPxls, DistThres, Sampling,
and KmMaxIter (Table 2).

We tested ten different combinations of these parameters (Table 3)
to determine the one that produced the balance between the numbers
of resulting objects vs. object homogeneity. This assessment was done
visually by inspecting the resulting objects overlaid on the base
segmentation image, as usual for GEOBIA applications.

TABLE 2 Description of the parameters used in the RSGISLib software for segmenting drone images from Serra do Cipó (MG, Brazil) to support rupestrian grassland
vegetation type classification.

Parameter Mean and description

NumClusters Number of K-means clusters—controls the general homogeneity and thus the number of resulting objects. More clusters = more homogeneity,
more objects

MinPxls Minimum size of the resulting objects

DistThres Distance threshold merging neighboring similar clusters

Sampling Number of pixels sampled for determining (K-means) clusters

KmMaxIter Maximum number of iterations for K-means clustering

TABLE 3 Combinations of image segmentation parameters (NumClusters, MinPxls, DistThres, Sampling, and KmMaxIter, see Table 1) for generating image objects to
classify rupestrian grassland vegetation types on UAV images from Serra do Cipó (MG, Brazil).

ID NumClusters MinPxls DistThres Sampling KmMaxIter

1 20 100 1,000 100 200

2 10 50 1,000 500 100

3 5 500 5,000 200 100

4 20 400 4,000 300 200

5 30 30 5,000 100 200

6 10 500 5,000 100 200

7 30 400 5,000 100 200

8 25 450 3,000 100 200

9 15 450 5,000 100 200

10 20 600 5,000 100 200
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TABLE 4 Spectral classes used for drone image classification of rupestrian grasslands at Serra do Cipó (MG, Brazil).

Spectral class Characteristics Photo Number of samples
collected

Bare soil Roads and highways in general 110

Bare rock Surface with complete absence of vegetation 150

Riparian forest Forested formations along rivers and streams 224

Water body Rivers and streams 90

Rocky outcrops Rocky outcrops with significant and characteristic vegetation cover 441

(Continued on following page)
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Our classification key was comprised of nine spectral classes: “Sandy
Grassland”, “Stony Grassland”, “Wet Grassland”, “Rocky Outcrop”,
“Cerrado Scrubland”, and “Riparian Forest” vegetation types (Morellato
and Silveira, 2018; Mattos et al., 2019), as well as “Bare Soil”, “Bare
Rocks” and “Water Body”, non-vegetation cover (Table 4). We defined
class training samples by delineating polygons over the UAS images,
guided by a subsample of 70% of the ground observation, while the
remaining 30% were destined for accuracy assessment.

Image classification was applied using the Random Forest
approach, a machine learning algorithm from the Sci-Kit Learn
Python library (Pedregosa et al., 2011), accessible in the RSGISLib
library (https://www.rsgislib.org/). This approach can be applied to
quickly identify best-performing features and build a robust
classification model (Rodriguez-Galiano et al., 2012). The main

parameters of the Random Forest algorithm are n-estimators and
max-features, the first referring to the number of decision trees
generated by the classifier, and the second representing the
maximum number of randomly chosen attributes considered by
the algorithm when creating nodes on each decision tree. We
tested three combinations of parameters, varying in the number of
decision trees: 5, 200, and 500 numbers of decision trees.

Assessing the resulting accuracy of each classification, we
computed the confusion matrix, general accuracy, and Kappa index
of agreement (Congalton, 1991) for each classification, based on the
reference data, using the custom ‘rsacc’ package developed in R
(https://github.com/EcoDyn/rsacc).

The overview of the methodological procedures can be visualized
in Figure 2.

TABLE 4 (Continued) Spectral classes used for drone image classification of rupestrian grasslands at Serra do Cipó (MG, Brazil).

Spectral class Characteristics Photo Number of samples
collected

Cerrado
scrubland

Herbaceous/shrub formations with sparse bushes, found on shallow soils of
low fertility

165

Wet grassland Herbaceous/shrub formations that occur in areas with groundwater upwelling
or depressions that accumulate water during the rainy season

214

Stony grassland Herbaceous formations, with rare bushes, a complete absence of trees, and the
presence of stony/pebble substratum

184

Sandy grassland Herbaceous formations growing on dry and nutrient-poor sandy soils with
high porosity, permeability, and erosion susceptibility

292
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3 Results

The results of orthomosaic registration revealed the importance of
complete alignment of the time series to obtaining concrete, effective
and accurate results in the classification process. Figure 3 shows the
comparison between the Euclidean distance displacement before and
after the registration process, revealing the improvement in the quality
and accuracy of images generated by UAS.

Regarding the segmentation process, according to enumeration in
Table 3, segmentation 10 showed the best parameter combination,
producing results that properly covered the homogeneity areas of the
image. We used photointerpretation and visual techniques to choose
the best parameter combination.

In addition, concerning the classification processes, all values
extracted during the validation process performed in R (KAPPA
index, overall accuracy, and overall error) are shown in Table 5. The
classification to the date 05 of September 2016 received 0.987 for KAPPA
Index and 0.989 for general accuracy. Moreover, the classification to the
date 05 of January 2017 received 0.985 for KAPPA Index and 0.988 for
general accuracy. Finally, the classification using the stack with two dates
received 0.969 for KAPPA Index and 0.974 for general accuracy.

The processes using machine learning techniques require
attention to their parameter choice. In the case of Random Forests,
the main parameter tested is n-estimators, referring to the number of
decision trees generated by the classifier. We tested three different
numbers of decision trees, as exposed in Materials and Methods, and
500 trees were chosen as the better number for classifying the
rupestrian grassland.

In general, the greater number of decision trees means a greater
number of analyzes that the algorithmwill perform to arrive at a result.
This number of decision trees was chosen due to the peculiarities
present in the type of image (hyperspatial resolution) and in the type
of vegetation (rupestrian grassland with high vegetation
heterogeneity). In this sense, for effective classification of the
rupestrian grassland, more decision trees were needed. Thus, all
data was processed using 500 decision trees and these results are
presented in Figure 4.

We classified each image individually and, also, the stack image (a
merged between the image dated 25 September 2016 and 05 January
2017). According to Table 6, which shows the proportion of each
spectral class according to the total area, in each classification
performed, the Rocky Outcrop class received the highest

FIGURE 2
Flowchart with methodological procedures performed in the research, divided into four main steps: [1] Drone imagery (pink); [2] Data field collection
(yellow); [3] Orthomosaic registration (green), and [4] Image classsification (blue).
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percentage of area classified (25.398% in September 2016, 24.107% in
January 2017 and 25.114% in stack), followed by Sandy Grassland
(20.806% in September 2016, 21.108% in January 2017 and 18.689% in
stack). The lowest percentage of area classified focus on Bare Soils
(1.243% in September 2016, 0.994% in January 2017 and 1.408% in
stack), followed by Bare Rocks (1.924% in September 2016, 2.431% in
January 2017 and 2.325% in stack). The stacking process helped the
algorithm to properly classify the spectral classes present in rupestrian
grassland according to reality, furthering the capture of different
phenological stages and patterns of each vegetation type.

In Tables 7–9 we presented the results of analyzes performed with
the error matrix of each classification process. An error matrix is a
square array of numbers set out in rows and columns, in which the
columns represent the reference data (validation data) while the rows
represent the classification generated from the UAS data. The major
diagonal of the matrix indicates the percent of pixels classified
correctly, while the off-diagonal cell values represent the percent of
pixels classified incorrectly in each spectral class.

In all results, we detected an uncertainty between two spectral
classes: sandy grassland and wet grassland. In Table 7, 18.380% of
pixels of sandy grassland were classified correctly, but 0.322% of these
pixels were misclassified as wet grassland. In Table 8, 19.320% of pixels

were classified correctly and 0.283% misclassified. In Table 9, 17.601%
were classified correctly and 1.410% misclassified.

The other two relevant analyzes performed in the error matrix are
presented in Table 8, where 0.493% of pixels of bare soils were
misclassified as stony grassland. Also, in Table 9, 0.490% of pixels
of stony grassland were misclassified as bare soils. This analysis
showed some uncertainty between bare soils and stony grassland.

4 Discussion

Multi-temporal UAS images associated with RGB cameras, and
the machine learning methods applied in our study produced
consistent results, as far as concerns the ecology analysis and are
adequate for mapping vegetation, at least at the life-form level
(i.e., tree, shrub, and herbaceous species). The combination
between the OBIA method and the Random Forest classifier
reduced the misclassified pixels and the effect known as ‘salt and
pepper’, generating extremely high general accuracy and kappa index.
In general, machine learning approaches have high potential to
capture the non-linear relationship between remote sensing data
and vegetation parameters and have the capability of integrating

FIGURE 3
Results of orthomosaic registration for four dates of the temporal series images from rupestrian grasslands (Serra do Cipó, MG), comparing the Euclidean
distance displacement before and after registration processes. Drone flight image dates from (A) 23 of February 2016; (B) 22 of May 2016; (C) 16 of August
2016; (D) 30 of November 2017.

TABLE 5 Results of all classification performed using the Random Forests algorithm.

ID Date KAPPA index Overall accuracy Overall error

Map 1 Sep/25/2016 0.987 0.989 0.011

Map 2 Jan/05/2017 0.985 0.988 0.012

Map 3 Stack 0.969 0.974 0.026

Frontiers in Environmental Science frontiersin.org09

Medeiros et al. 10.3389/fenvs.2023.1083328

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1083328


multisource information at different levels (Yao, Qin, and Chen,
2019). In addition, the results acquired confirmed the importance
of using machine learning algorithms in remote sensing vegetation
classification, due to their powerful adaptation, self-learning, and
parallel processing capabilities (Navin and Agilandeeswari, 2020;
Meng et al., 2021; 2022).

Therefore, some challenges need to be emphasized and both the
hardware and software of UAS remote sensing technology require
improvements: [1] The endurance of UAS is relatively limited, the
flight stability is not strong enough in areas with large terrain
fluctuation and the lack of flight altitude limits the image size; [2]
Although more lightweight and smaller sensor systems have become
available, such as hyperspectral and LiDAR sensors, but they are still

expensive; [3] The integration between UAS platforms and sensors
requires improvement, e.g., most of the multispectral, hyperspectral,
and thermal sensors are built independent of the UAV platform, so,
need an extra GPS module and, also, UAS are often equipped with a
single sensor, multisensor integration is beneficial to improve
monitoring accuracy and efficiency; [4] The mosaic workload is
significantly higher than satellite imagery, which takes up more
time for image processing, resulting in the need to develop more
robust algorithms, like deep learning techniques, in addition, the
technology of mass data processing needs to be improved due to
the richness and variety of data obtained; [5] The most vegetation
classifications via UAS require human participation and
interpretation, indicating that the combination between UAS

FIGURE 4
Classification of rupestrian grassland Serra do Cipó (MG, Brazil): (A) drone flight image from 25 September 2016; (B) drone flight image from 05 January
2017; (C) stack with two drone flight dates: 25 September 2016 (dry season) and 05 January 2017 (wet season); (D) original orthomosaic arising from SfM
algorithm; (E) zoom of a specific portion of the original orthomosaic; (F) zoom of a specific portion of the drone flight classified image from 25 September
2016; (G) zoomof a specific portion of the drone flight classified image from05 January 2017; (H) zoomof a specific portion of the stack classified image.
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remote sensing with ground data and satellite data needs to be
strengthened; if the dataset used for training is extent, computer
learning techniques would generate a satisfactory classification
outcome; [6] The use of UAS images to monitor tropical savannas
leaf phenology is a challenge due to difficult methods to extract
accurate quantitative phenology estimates under variable lighting

and viewing conditions; [7] The application scenarios of UAS
remote sensing in grassland ecosystem monitoring need to be
expanded and deepened, mainly in animal investigation and soil
physical and chemical monitoring; and also, the correlation
between the scientific research of UAS remote sensing monitoring
and practical decision making of grassland management is still
insufficient (Neumann et al., 2019; Park et al., 2019; Lyu et al.,
2020; 2022; Sun et al., 2021).

The hyperspatial imagery, like UAS technology, associated with
machine learning classification techniques enabled the identification
of even fine grassland vegetation types such as wet, stony, and sandy
grasslands. Although, some adjustments were necessary for improving
the accuracy of orthomosaic classification, such as [1] precise sensor
position; [2] orientation data, and [3] several GCPs during the
orthomosaic registration process (Tsai and Lin, 2017).

4.1 Grassland classification and their
relationship with vegetation phenophases

Identifying the grassland classes are crucial for managing and
utilizing grassland resources and for reconstructing and restoring the
grassland ecological environment (Meng et al., 2022). To further
understand the vegetation distribution across a tropical

TABLE 6 Percentage of each spectral class identified in classification maps
(25 September 2016, 05 January 2017 and the stack).

Class 2016 2017 Stack

1: Rocky outcrop 25.398 24.107 25.114

2: Sandy grassland 20.806 21.108 18.689

3: Stony grassland 13.873 16.151 14.062

4: Cerrado scrubland 13.395 11.774 13.946

5: Wet grassland 6.898 6.255 7.094

6: Water body 2.382 1.303 2.381

7: Riparian forest 14.080 14.039 14.981

8: Bare rocks 1.924 2.431 2.325

9: Bare soils 1.243 0.994 1.408

TABLE 8 Error matrix derived from the classification performed with Random Forest algorithm, using drone flight from date 05 January 2017.

1 2 3 4 5 6 7 8 9

1: Rocky outcrop 10.110 0 0.005 0 0.001 0 0.005 0 0

2: Sandy grassland 0 19.360 0.009 0.027 0 0 0 0 0

3: Stony grassland 0.003 0.046 17.140 0.005 0 0 0.05 0 0.493

4: Cerrado scrubland 0.021 0.07 0.001 9.550 0 0 0.011 0 0

5: Wet grassland 0 0.283 0 0.089 10.930 0 0 0 0

6: Water body 0 0 0 0 0 3.050 0.013 0.004 0

7: Riparian forest 0.004 0 0 0 0 0.01 25.620 0 0

8: Bare rocks 0 0 0 0 0 0 0.019 2.420 0

9: Bare soils 0 0 0 0.053 0 0.009 0 0 1.810

TABLE 7 Error matrix derived from the classification performed with Random Forest algorithm, using drone flight from date 25 September 2016.

1 2 3 4 5 6 7 8 9

1: Rocky outcrop 9.620 0 0.001 0 0 0 0.004 0 0

2: Sandy grassland 0.012 18.380 0.029 0.120 0.302 0 0.001 0 0

3: Stony grassland 0 0.007 16.270 0.035 0 0 0 0 0

4: Cerrado scrubland 0.005 0.081 0.003 9.060 0 0 0.009 0 0

5: Wet grassland 0 0.322 0 0.034 10.090 0 0 0 0

6: Water body 0 0 0 0 0 5.170 0.002 0 0

7: Riparian forest 0.003 0 0 0 0 0.008 26.970 0.047 0

8: Bare rocks 0 0 0 0 0 0 0.021 2.270 0.025

9: Bare soils 0 0 0 0.019 0 0 0 0 2.160
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mountaintop landscape, and associate this with leafing dynamics, we
quantified the Land Use and Land Cover patterns at the vegetation
level using OBIA method and Random Forests classifier. Using
hyperspatial imagery through UAS remote sensing technology was
possible the identification of vegetation phenophases. Phenophases,
from phenology, are defined as an observable stage or phase in the
annual life cycle of a plant or animal and are considered as the period
over which newly emerging leaves are visible or open flowers are
present on a plant or community (Camargo et al., 2018). Abiotic
factors, mainly water and light availability, are primary drivers of plant
phenology, and are important to predict vegetation changes over time
(Walker and Noy-Meir, 1982; Alberton et al., 2019), for instance,
water availability regulates the length of the growing season and the
phenological synchrony among savannas species (Camargo et al.,
2018; Alberton et al., 2019).

Generally, tropical savannas present marked seasonality (Walker and
Noy-Meir, 1982), with a conspicuous contrast between the dry and rainy
seasons (Ferreira et al., 2003; Camargo et al., 2018; Alberton et al., 2019),
and tropical species present high heterogeneity of phenological patterns
(Camargo et al., 2018; Park et al., 2019). Leafing is the plant phenological
event that defines the growth season and controls crucial ecosystem
processes (Alberton et al., 2014; 2019), in our case, the image dated
25 September 2016 (end of dry season) revealed the beginning of
springtime, showing the timing of the budburst of individual trees and
coinciding with the beginning of tree canopy and grassland greenness
(Streher et al., 2017), which is responsible for causing a change in leaf color
(Alberton et al., 2017; 2019; Camargo et al., 2014; 2018), consequently,
resulting in a differentiation visible in the orthophoto.Otherwise, the image
dated 5 January 2017 represents the end of canopy development in the wet
season, indicating the tree’s mature leaf stages, the leaf aging process, and
flowering/fruiting across the grasslands (Alberton et al., 2017; Alberton
et al., 2019; Streher et al., 2017; Le Stradic et al., 2018; Camargo et al., 2014;
2018). This process causes a new change in the color patterns identified in
the orthophoto. Our results resemble the sharp seasonal changes or spring
flushing and abscission in autumn described by Klosterman and
Richardson (2017). In addition, the stack method helped to capture
these minor differences in vegetation phenophases, mainly due to the
differentiation in the color composition of the orthophoto.

Detailed phenophase delineations are limited in conventional
satellite imagery, with spatial resolutions in order to meters/
kilometers. Conversely, fine-scale phenological variations are

mainly driven by individual species distributions and cannot be
mapped by satellite imagery (Klosterman et al., 2018; Neumann
et al., 2019). In general, ecologists use near-surface remote sensing,
such as tower-mounted cameras, called “phenocams”, to quantify
tropical leaf phenology, but the problem with this method is the
limited area covered by phenocams, providing insufficient sample
sizes for studying intra and interspecific variation of leaf phenology
(Park et al., 2019). In this sense, UAS remote sensing techniques open
up promising potentials for detailed ecosystem studies, and for the first
time in ecology and remote sensing research history, the structure of
ecosystems can be quantified from individual plants down to the leaf
scale (Díaz-Delgado, Cazacu, and Adamescu, 2019).

Plant phenology has been recognized as an ecological key indicator
of ecosystem dynamics and represents an important manifestation of
the temporal change of growth and reproduction in the plant life-cycle
(Morellato et al., 2016). The association of plant phenology-mapping
may act as a key component for monitoring vegetation dynamics,
management practices and ecological restoration in applied nature
conservation, and is regarded as fingerprints of climate change and
biodiversity loss (Neumann et al., 2019; Park et al., 2019).

In summary, data collection and processing of UAS remote
sensing is new and complicated for most ecologists and remote
sensing researchers but opens new possibilities in plant ecology by
addressing classical ecological questions at different ecological scales,
individual, population, or community levels. Besides, some studies
demonstrated that object-based classification approaches can
successfully classify ultrahigh spatial resolution imagery, but the
choice between what methods are better does not follow rigid rules
and depends on the aims of your study and on several characteristics
of the available data and the study area, such as vegetation type and
phenology, land cover heterogeneity and imagery features (Ma et al.,
2017; Ruwaimana et al., 2018).

5 Conclusion

This study examined the use of Unmanned Aerial Systems remote
sensing technology associated with machine learning techniques
(OBIA method and Random Forest algorithm) to classify and
understand the vegetation distribution across a grassland landscape.
Through the results obtained with the validation process all

TABLE 9 Error matrix derived from the classification performed with Random Forest algorithm. Stack with two drone flight image dates: 25 September 2016 and
05 January 2017.

1 2 3 4 5 6 7 8 9

1: Rocky outcrop 9.750 0 0 0 0.002 0 0.007 0 0

2: Sandy grassland 0.012 17.601 0.024 0.110 0 0 0 0 0

3: Stony grassland 0 0.005 16.030 0 0 0 0 0 0

4: Cerrado scrubland 0.024 0.055 0.003 9.190 0 0 0.009 0 0

5: Wet grassland 0.011 1.410 0 0.082 10.550 0 0 0 0

6: Water body 0 0 0 0 0 5.088 0.105 0.044 0

7: Riparian forest 0 0 0 0.011 0 0.175 27.270 0 0

8: Bare rocks 0 0 0 0 0 0 0.023 2.290 0

9: Bare soils 0 0 0.490 0.011 0 0 0 0.012 2.220
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classifications performed received general accuracy and KAPPA index
above than 0.96, indicating a high efficiency of machine learning
techniques to process the ultrahigh spatial resolution data generated
by UAS images. Using the UAS to explore and analyze vegetation
phenomena is becoming a new efficient remote sensing technique,
providing vegetation recognition, the extraction of structural and
functional properties of ecosystems and the quantification from
individual plants down to the leaf scale. A big challenge of applying a
robust algorithm is the choice of the better combination of parameters
for proposing a high quality of vegetation classification. Our results
demonstrated that the better combination of parameters, for
segmentation process, were 20 for the number of K-means clusters,
which controls the general homogeneity and the number of resulting
clusters, and 600 pixels for the minimum size of the resulting cluster,
which produced results that properly covered the homogeneity areas of
the image. In addition, for the Random Forest classifier the number of
decision trees chosen were 500 decision trees, where the greater number
of decision trees means a greater number of analyzes that the algorithm
will perform to arrive at a result.

In recent years, machine learning techniques associated with
ultrahigh spatial resolution imagery has been widely used in
grassland classification due to its high accuracy and powerful
processing ability, however, still there are set of challenges and
limitations, such as high time-consuming, because processing this
big dataset require a great computational configuration, making it
impossible processing the data with conventional techniques and
traditional GIS tools; therefore, automatic identification of
vegetation classes requires further exploration. In future studies, we
suggest explore the method of combining machine learning
algorithms, multitype indices (NDVI, DEM, temperature,
precipitation, and so on) or multisensor integration to improve the
accuracy of grassland classification. Considering future directions the
UAS remote sensing technology has been rapidly improved and
developed along with of precision and intelligence; the endurance,
stability and flight height and other performance parameters of UAV
platforms will be significantly improved; the cost of sensors can be
reduced; machine learning techniques will become an important
technical means to provide a technical solution for automatic
processing and analysis of massive monitoring data, and finally, the
decision-making support of UAS remote sensing for grassland
management will be enhanced.
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