Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34817
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMachado, Gabrielen_UK
dc.contributor.authorPereira, Matheus B.en_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorDos Santos, Jefersson A.en_UK
dc.date.accessioned2023-02-10T01:01:51Z-
dc.date.available2023-02-10T01:01:51Z-
dc.date.issued2022-12-22en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34817-
dc.description.abstractIn some scenarios, a single input image may not be enough to allow the object classification. In those cases, it is crucial to explore the complementary information extracted from images presenting the same object from multiple perspectives (or views) in order to enhance the general scene understanding and, consequently, increase the performance. However, this task, commonly called multi-view image classification, has a major challenge: missing data. In this paper, we propose a novel technique for multi-view image classification robust to this problem. The proposed method, based on state-of-the-art deep learning-based approaches and metric learning, can be easily adapted and exploited in other applications and domains. A systematic evaluation of the proposed algorithm was conducted using two multi-view aerial-ground datasets with very distinct properties. Results show that the proposed algorithm provides improvements in multi-view image classification accuracy when compared to state-of-the-art methods. The code of the proposed approach is available at https://github.com/Gabriellm2003/remote_sensing_missing_data.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationMachado G, Pereira MB, Nogueira K & Dos Santos JA (2022) Facing the Void: Overcoming Missing Data in Multi-View Imagery. <i>IEEE Access</i>. https://doi.org/10.1109/access.2022.3231617en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectRemote Sensingen_UK
dc.subjectImage Classificationen_UK
dc.subjectMulti-Modal Machine Learningen_UK
dc.subjectMetric Learningen_UK
dc.subjectCross-View Matchingen_UK
dc.subjectMulti-view Missing Data Completionen_UK
dc.titleFacing the Void: Overcoming Missing Data in Multi-View Imageryen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/access.2022.3231617en_UK
dc.citation.jtitleIEEE Accessen_UK
dc.citation.issn2169-3536en_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.author.emailkeiller.nogueira@stir.ac.uken_UK
dc.citation.date22/12/2022en_UK
dc.description.notesOutput Status: Forthcoming/Available Onlineen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85146238224en_UK
dc.identifier.wtid1870721en_UK
dc.contributor.orcid0000-0002-7133-6324en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2022-12-19en_UK
dcterms.dateAccepted2022-12-19en_UK
dc.date.filedepositdate2023-01-11en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMachado, Gabriel|0000-0002-7133-6324en_UK
local.rioxx.authorPereira, Matheus B.|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorDos Santos, Jefersson A.|0000-0002-8889-1586en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2023-02-08en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2023-02-08|en_UK
local.rioxx.filenameFacing_the_Void_Overcoming_Missing_Data_in_Multi-View_Imagery.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2169-3536en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Facing_the_Void_Overcoming_Missing_Data_in_Multi-View_Imagery.pdfFulltext - Published Version19.24 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.