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ABSTRACT In some scenarios, a single input image may not be enough to allow the object classification.
In those cases, it is crucial to explore the complementary information extracted from images presenting the
same object from multiple perspectives (or views) in order to enhance the general scene understanding and,
consequently, increase the performance. However, this task, commonly called multi-view image classifica-
tion, has a major challenge: missing data. In this paper, we propose a novel technique for multi-view image
classification robust to this problem. The proposed method, based on state-of-the-art deep learning-based
approaches and metric learning, can be easily adapted and exploited in other applications and domains. A
systematic evaluation of the proposed algorithm was conducted using two multi-view aerial-ground datasets
with very distinct properties. Results show that the proposed algorithm provides improvements in multi-
view image classification accuracy when compared to state-of-the-art methods. The code of the proposed
approach is available at https://github.com/Gabriellm2003/remote_sensing_missing_data.

INDEX TERMS Remote Sensing, Image Classification, Multi-Modal Machine Learning, Metric Learning,
Cross-View Matching, Multi-view Missing Data Completion

I. INTRODUCTION

Standard image classification tasks are trained by using a
single data point as input. However, in some cases, using only
one input image is not enough to allow its categorization.
One reason for this is the perspective of the object presented
in the image, which may not have enough information to
allow its identification. For example, aerial images allow us
to observe scenes from above, providing information about
the general shape and structure of the objects and facilitating
the classification of some entities such as bridges and streets.
On the other hand, ground images give us a closer and
frontal view of the object, providing information about fine
details and helping the recognition of, for instance, statues
and specific facade buildings (such as hospitals).

In this context, researchers [1], [2] noticed that it would be
essential to exploit the complementary information extracted
from images depicting the same object from multiple per-
spectives (or views) in order to enhance the general scene
understanding and, consequently, increase the performance.
This important task, commonly called multi-view image

classification, has been successfully explored for distinct
applications, including geo-localization [3], mammography
analysis [4], and land use mapping [5]. However, although
essential and impactful, such task has a major challenge:
missing data. When working with multi-view data, it is
really common to have one or more views missing due to
malfunction of a sensor, noise, or simply lack of data. This is
even worse when considering that multi-view samples with
missing data are often discarded entirely, resulting in a severe
loss of available information, as presented in Figure 1. This
issue is especially relevant for domains in which it is difficult
to obtain annotated multi-view samples, such as the medical
and remote sensing ones [1].

In this paper, we propose a novel framework for multi-
view image classification capable of dealing with missing
data using information extracted from real (non-synthetic)
images. Technically, this method can be divided into two
parts. In the first one, a retrieval network, trained using metric
learning, receives an input instance and retrieves samples that
can be used to fill its missing data gap. Then, in the second
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FIGURE 1. Example of the impact of missing views in the multi-view image
classification. A missing view actually represents an instance that can not be
used for training, i.e., it represents a severe loss of available information that
could be used for the learning process.

part, information extracted from both the input instance and
the top-k retrieved images are further processed using state-
of-the-art deep learning-based approaches and then late-
fused using standard algorithms in order to perform the
final classification. We evaluate the proposed framework on
two 2-view (aerial and ground) datasets from the literature,
achieving state-of-the-art results. Our methodology, however,
can be easily expanded for more complex scenarios with
more than two views.

In practice, the main contributions of this work are:
• A novel and versatile multi-view classification tech-

nique capable of efficiently handling missing data and
that can be easily adapted to other applications with any
number of views;

• A multi-view retrieval model that can, with a single
training process, recover images (to fill the missing data
gap) for all views, thus reducing the computational load.

The paper is structured as follows. Related works are
presented in Section II while the proposed technique is in-
troduced in Section III. Section IV presents the experimental
protocol and Section V reports and discusses the obtained
results. Finally, in Section VI we conclude the paper and
point at promising directions for future work.

II. RELATED WORK
Although several methods have been proposed to tackle
multi-view image classification [1], [6], only a few works
have investigated and conceived approaches to handle miss-
ing data [5], [7], [8], [9], [10], [11].

Zhang et al. [7] proposed a feature-level completion
method for missing view of multi-view data. Technically,
their approach first linearly maps multi-view data to a
feature-isomorphic subspace, unfolding the shared informa-
tion from different views. Then, features of this isomorphic
space are used to train a model, which is responsible for
retrieving features to represent the missing view and, con-
sequently, completing the multi-view data. In [9], the authors

proposed a multi-modal classification framework, called Em-
braceNet, that is robust to missing data. This framework uses
a multinomial distribution to select the most relevant features
of each view. In order to make the model robust to the partial
absence of data, they readjust this multinomial distribution
to select features only of the existing modalities. By doing
this, they argue that the missing information due to data
loss of a modality can be covered by the other modalities.
Finally, Srivastava et al. [5] proposed a two-stream network
that extracts discriminative features from aerial and ground
images and then combines them for the final classification.
In order to make their approach robust to missing data, they
used these discriminative features to create an embedding
space (using Canonical Correlation Analysis (CCA) [12]),
which is exploited to retrieve samples that would be similar
to the missing data and thus complete the data.

More recently, Generative Adversarial Networks (GANs) [13]
have gained popularity in the missing data completion field,
due to their ability to generate synthetic samples. Although
there are several works [8], [10], [11] handling multi-
view missing data completion using GANs, those are not
thoroughly discussed here given that, as introduced, they
are outside of the scope of this work, which focuses on
information extracted from real (non-synthetic) images. The
main reason for this is the fact that training models to
generate good quality synthetic data is troublesome mainly
when having a small amount of data, a common case in multi-
view scenarios.

Considering this, in this work, we propose a multi-view
image classification framework that uses a deep network,
trained using metric learning/cross-view matching, to retrieve
potential images that can be used to fill the missing data
gap of input multi-view instances and, consequently, improve
the general classification performance. Our framework is
capable of recovering samples from a different domain just
by using the data from the available view. Several differences
may be pointed out between the proposed approach and the
aforementioned works:

1) Instead of handling missing data at the feature level [7],
[9], the proposed approach deals with such an impor-
tant issue at the input level, allowing a better under-
standing and (a certain level of) explainability of the
final results.

2) The proposed technique learns the embedding space
using deep metric learning, which allows the model
to capture specific features that optimize the class
distribution in such space (i.e., end-to-end learning),
thus being completely different from other works, such
as Srivastava et al. [5], which use classification features
extracted from an independent model to optimize the
embedding space, usually using an external technique,
such as CCA [12].

III. METHODOLOGY
The proposed multi-view data classification approach, pre-
sented in Figure 2, can be split into two parts. In the first one
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(the retrieval part), a multi-view sample with missing data is
processed using a retrieval network responsible for ranking
the images (of an auxiliary database composed of scenes of
several classes but from the same domain of the missing data)
based on their potential to be paired with this input data. The
original image and the generated ranking are then forwarded
to the second part, i.e., the multi-view classification. In this
step, retrieved images and original input are processed using
their corresponding networks and then fused to produce the
final classification. Observe that instead of pairing the input
image with only the best retrieved image, we select the top-k
images in order to alleviate any potential bias and improve
generalization.

More details on each of those components, i.e., the re-
trieval and the classification parts, are presented in the next
sections.

A. RETRIEVAL
As introduced, the retrieval network is responsible for recov-
ering images that could potentially be used as pair for an
input example with missing data.

Technically, during the training, such a model receives, as
input, multi-view image pairs, and is optimized using the
weighted soft-margin triplet loss [14], in which the main
objective is to pull these input pairs (commonly called anchor
and positive samples) close together whereas pushing dissim-
ilar data (i.e., negative examples) apart. Based on previous
works [15], [16], [17], the negative instances are mined
from the batch using the exhaustive mini-batch strategy [18],
which proposes to use all other samples (excluding the cur-
rent anchor and positive pairs) as negative examples. Due to
this, each batch must have only one image pair per class, in
order to ensure that samples from the same class will never
be used as negative examples [19].

Formally, suppose the model receives, as input, a batch
B = {b1, b2, ..., bC} composed of C elements, one of each
class, and in which each element is actually a multi-view
image pair bi = {Iiv1 , I

i
v2} (i.e., 2 views). The network first

extracts the features for each image pair F i = {F iv1 , F
i
v2}

and then uses these features to create a matrix of distances α
between all images, as presented in Equation 1.

αi,j = 2× (1− F iv1F
j ᵀ
v2 ) ∀ i, j ∈ C (1)

Given the matrix of distances α, it is possible to easily
calculate the distance between anchors and positive samples
(dap = αi,i), and between anchors and negative examples
(dan = αi,j ∀ i 6= j), and then use those to optimize the
model following the aforementioned weighted soft-margin
triplet loss [14]:

Lweighted = ln 1 + εγ(dap−dneg) (2)

where γ is a hyper-parameter that controls the loss conver-
gence [14].

It is important to highlight two main aspects of the training
procedure: (i) instead of using the exact pair of images as

input, random pairs within the same class are employed in
order to increase the robustness of the model to missing data
(given that, during the testing phase, there will be no cor-
responding pair to the query image due to missing data); (ii)
for each input image pair, the model is optimized considering
one as an anchor and the other as a positive sample and
also vice-versa. This, which can be easily done using the
matrix of distances α, allows the model to be prepared for
missing data from all possible domains without increasing
the computational load, as aforementioned.

During the inference, a multi-view sample with missing
data (also called query) is paired with other images (from the
previously established auxiliary database) that could poten-
tially fill this missing data gap. All pairs are then processed
by the retrieval network and ranked based on their similarity
(i.e., on their euclidean distance). All images and the ranking
are then forwarded to the classification network to be further
processed, as explained in the next Section.

B. CLASSIFICATION
In the second step of the proposed methodology, the input
image with missing data is finally classified. Towards this,
first, the top-k most similar images are selected based on the
aforementioned ranking. Such images are employed to fill
the missing data gap of the original query image. The idea
of using the top-k images is to alleviate any potential bias
and improve generalization, given that using only one could
produce under-representative multi-view pairs whereas using
all images could generate instances composed of scenes from
different classes.

Query and top-k images are then processed using networks
trained specifically for their domains. Predictions σ for the
top-k images are fused using the mean operation [20]:

σf2 =

∑k
i=1 σi
k

(3)

Finally, the predictions for the query image (σf1 ) and the
merged predictions of the top-k scenes (σf2 ) are late-fused
using the product operation [20], thus producing the final
classification:

ŷ = argmax

2∏
i=1

σfi (4)

Observe that both mean and product fusion strategies were
selected based on previous works [21], [20].

C. IMPLEMENTATION DETAILS
The architecture of the retrieval network consists of a two-
stream encoder, in which each encoder is actually a pre-
trained SwAV [22] model with ResNet-50 [23]. Precisely,
this architecture has no classification layers and is trained
using the aforesaid weighted soft-margin triplet loss [14].

For the inference, instead of using the retrieval network to
extract features for all database images for every input query
(a costly and time-consuming process), we extract, save, and
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FIGURE 2. Pipeline of the proposed approach applied in a two-view scenario, where aerial images are missing. First, a retrieval network is employed to rank
images (of an auxiliary database composed of scenes from the same domain of the missing data) based on their potential to be paired with the input sample with
missing data (Step 1). Then, the top-k retrieved images and the input data are processed and fused, generating the final classification (Step 2). Following a similar
logic, this methodology can be applied to different scenarios.

reuse the features of those database images in order to speed
up the testing phase.

For the classification part, we evaluated different Con-
volutional Networks (VGG [24], DenseNet [25], and
SKNet [26]). More details about this, as well as about the
employed hyper-parameters, can be seen in Section IV-B.

D. GENERALIZATION
Although the methodology was described considering input
samples composed of 2 views (v1 and v2), it can be easily
adapted to scenarios with N views (with one of them miss-
ing).

Precisely, for the retrieval part, two changes would be
required: (i) instead of using the features of the views to
create the matrix of distances α (Equation 1), one would
use the average of the features (from the non-missing views)
to compute the distance against samples from the missing
domain; and (ii) instead of using a two-stream network, an
N-stream one would be required in order to support N-view
inputs.

As for the classification part, two simple changes would
be necessary: (i) a network for each view would need to be
trained in order to extract features for that domain; and (ii)
Equation 4 must be adjusted to late fuse the prediction scores
of all N views (instead of 2).

With those small changes, it is possible to generalize the
proposed approach to datasets composed of instances with
N-views.

IV. EXPERIMENTAL SETUP
In this section, we describe the experimental setup used for
the experiments. Section IV-A presents the datasets whereas
Section IV-B describes the experimental protocol. Finally,
baselines are described in Section IV-C.

A. DATASETS
Two multi-view datasets with very distinct properties were
used for the experiments in order to better evaluate the
effectiveness of the proposed approach. The first dataset,
called AiRound [20], is composed of 11,753 images divided
into 11 classes: airport, bridge, church, forest, lake, park,
river, skyscraper, stadium, statue, and tower. Some examples
of these classes are presented in Figure 3. The second one,
named CV-BrCT [20], comprises approximately 24k pairs of
images unevenly split into 7 urban classes: apartment, house,
industrial, parking lot, religious, school, store. Samples of
these classes are presented in Figure 4.

For both datasets, each multi-view sample is composed of
a ground and an aerial perspective. Images for the former do-
main were collected from different sources (such as Google
Images, Google Places, Google Street View) and have vary-
ing resolutions whereas scenes for the latter perspective were
collected using Google Maps and have a fixed resolution of
500× 500 pixels.

B. EXPERIMENTAL PROTOCOL
For both datasets, we employed a 5-fold cross-validation
protocol, in which 80% of the images are used for train-
ing, 10% for validation, and the remaining 10% for testing.
Following this protocol, we simulated and evaluated two
different missing data scenarios using the test set: one for
aerial and one for ground.

Considering this, the retrieval network (described in Sec-
tion III-C) was trained using the following hyper-parameters:
200 epochs, batch size equal to the number of classes of
the dataset (i.e., 11 for AiRound and 7 for CV-BrCT), γ
(Equation 2) of 10, Adam [27] as optimizer, learning rate of
0.00001, and exponential decays of 0.9 and 0.999. Results
related to this model are reported in terms of the average
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(a) Airport (b) Bridge (c) Church (d) Forest (e) Lake (f) Park (g) River (h) Skyscr. (i) Stadium (j) Statue (k) Tower

FIGURE 3. Examples of the AiRound Dataset.

(a) Apartment (b) House (c) Industrial (d) Parking (e) Religious (f) School (g) Store

FIGURE 4. Examples of the CV-BrCT Dataset.

mean Average Precision at K (mAP@K) [28], taken from all
5-fold experiments with its corresponding standard deviation.
Additionally, it is important to highlight that, during the
inference, this network used the validation set as the retrieval
database, i.e., images of the validation set are retrieved and
then paired (based on their similarity) with the test samples
for the final classification.

For the classification part, we evaluated three well-known
architectures: VGG [24], DenseNet [25], and SKNet [26]. All
networks were fine-tuned (from the ImageNet [29] dataset)
for each of the domains (aerial and ground) using the follow-
ing hyper-parameters: 200 epochs, early stop with 20 epochs,
batch size of 32, stochastic gradient descent as optimizer, a
learning rate of 0.001, and momentum of 0.9. In this case, all
obtained results are reported in terms of the average F1-Score
and standard deviation among all 5 folds.

C. BASELINES

Four techniques were considered as baselines for both
datasets. The first baseline, referenced as “No Fusion”, con-
sists of using a single-view classification CNN evaluated in
the data available in the test phase (without any completion).
The idea of this baseline is to establish a lower bound for the
other experiments. The second baseline, referenced hereafter
as “Fully-Paired”, performs final classification assuming that
the test set has no missing data (i.e., that it is fully paired). To
do so, this baseline uses two classification CNNs to extract
features from both aerial and ground domains which are then
fused (using the product fusion presented in Equation 4) to
produce the final result. As for the second baseline, the idea

is to set an upper bound for further experiments.
The remaining baselines come from the literature. One of

those is the EmbraceNet [9], a multi-view framework that
learns a multimodal distribution to select the most relevant
features of each view. This distribution can be adjusted
depending on the availability or absence of certain domains,
thus being able to handle missing data. Based on such
framework, we proposed a two-stream network in which
the final layer is actually an EmbraceNet layer [9], capable
of efficiently dealing with missing data. Such network was
trained using the same set of hyper-parameters used for the
classification models (Section IV-B).

The last baseline is the Canonical Correlation Analysis
(CCA) [5]. Such an approach learns matrices that project
the features from different views into a common latent
space, bringing closer the varying perspectives of the same
object [5]. Using such projection matrices (learned from
the training data) we can project the available view of the
test set into the common latent space and then retrieve the
closest scene to finally fill the missing data gap. Following
the guidelines introduced in the original work [5], we first
project the features extracted from the last layer before the
classification using a Principal Component Analysis (PCA),
and then use them as input for the CCA [5].

V. RESULTS
In this section, we present and discuss the obtained results.
Section V-A presents the results related to the retrieval part
whereas Section V-B evaluates and compares different con-
figurations for the classification part of the proposed frame-
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work. Finally, Section V-C compares the proposed frame-
work with state-of-the-art baselines.

A. RETRIEVAL ANALYSIS
In this Section, we analyze the retrieval network, a main
component of the proposed framework. Precisely, Figure 5
reports the retrieval results, in terms of mAP@K [28], for
both AiRound and CV-BrCT datasets.
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FIGURE 5. Results, in terms of mean Average Precision (mAP) and ranking
size (K), of the retrieval network for the aerial and ground missing data
scenarios in AiRound and CV-BrCT datasets. The shaded areas represent the
standard deviation across the folds.

Analyzing the results, it is possible to observe that the
retrieval network tends to produce better outcomes when
using aerial data as input query (i.e., when the ground view
is missing). This may be justified by the fact that most aerial
images tend to provide more context information than ground
scenes to the retrieval model, that in turn exploits such useful
data to recover similar images. Another important aspect to
discuss is the fact that, in general, the top-1 image does not
produce the best results in terms of mAP. This corroborates
with our initial analysis about the potential of using top-k
(instead of top-1) images to fill the missing data gap and,
consequently, produce better classification results. A better
discussion about the use of top-k images to fill this missing
data gap is presented in the next Section.

B. CLASSIFICATION ANALYSIS
In this Section, we analyze the impact of the different classifi-
cation networks (VGG [24], DenseNet [25], and SKNet [26])
and investigate the influence of the ranking size (i.e., top-k)
in the final performance of the framework considering two
distinct missing data scenarios (described in Section IV-B),
i.e., one for aerial and one for ground.

Obtained results for the AiRound and CV-BrCT datasets
are presented in Tables 1 and 2, respectively. For both
datasets and assessed scenarios, the strategy of combining
information from multiple images to fill the missing data gap
produced better outcomes than using just the top retrieved
image (an approach commonly exploited in the literature [7],
[5]). Again, this directly corroborates with our initial analysis
about the potential of combining information from the top-k
images to fill the missing data gap.

Aside from this, for the AiRound dataset, the best result
for the aerial missing scenario was produced by the SKNet
model [26] whereas the best outcome for the ground missing
scenario was yielded by the DenseNet network [25]. In both

TABLE 1. Obtained results achieved by the proposed method for the AiRound
dataset.

Ranking Size Available Data VGG [24] DenseNet [25] SKNet [26]

Top 1

Ground
(Aerial Missing)

0.74± 0.01 0.75± 0.02 0.75± 0.02
Top 2 0.76± 0.01 0.76± 0.02 0.77± 0.02
Top 3 0.76± 0.01 0.77± 0.03 0.77± 0.02
Top 4 0.77± 0.01 0.77± 0.02 0.78± 0.01
Top 5 0.77± 0.01 0.77± 0.02 0.78± 0.01
Top 10 0.77± 0.02 0.77± 0.02 0.78± 0.01
Top 50 0.77± 0.02 0.77± 0.02 0.78± 0.00
Top 100 0.77± 0.02 0.77± 0.02 0.79± 0.00

Top 1

Aerial
(Ground Missing)

0.82± 0.01 0.83± 0.01 0.83± 0.01
Top 2 0.83± 0.01 0.84± 0.02 0.83± 0.01
Top 3 0.83± 0.01 0.84± 0.02 0.84± 0.01
Top 4 0.83± 0.01 0.84± 0.02 0.84± 0.01
Top 5 0.83± 0.01 0.84± 0.02 0.84± 0.01
Top 10 0.83± 0.01 0.85± 0.02 0.84± 0.01
Top 50 0.83± 0.00 0.84± 0.02 0.84± 0.01
Top 100 0.83± 0.01 0.85± 0.01 0.84± 0.01

cases, the ranking size of 100 (i.e., the top-100 images)
yielded the best outcomes. For the CV-BrCT dataset, all
assessed models achieved very similar results when using a
ranking size greater than or equal to 3 for the aerial missing
scenario, and greater than or equal to 2 for the ground
missing scenario. Given this, the simplest model, i.e., VGG
network [24], with ranking size 100 was selected and used
for further experiments using this dataset.

TABLE 2. Obtained results achieved by the proposed method for the CV-BrCT
dataset.

Ranking Size Available Data VGG [24] DenseNet [25] SKNet [26]

Top 1

Ground
(Aerial Missing)

0.70± 0.02 0.70± 0.03 0.70± 0.02
Top 2 0.72± 0.02 0.72± 0.02 0.72± 0.02
Top 3 0.72± 0.02 0.73± 0.02 0.72± 0.02
Top 4 0.73± 0.02 0.73± 0.02 0.73± 0.03
Top 5 0.73± 0.02 0.73± 0.02 0.73± 0.02
Top 10 0.73± 0.02 0.73± 0.01 0.73± 0.02
Top 50 0.73± 0.02 0.73± 0.02 0.73± 0.03
Top 100 0.73± 0.02 0.73± 0.02 0.73± 0.02

Top 1

Aerial
(Ground Missing)

0.87± 0.02 0.87± 0.02 0.87± 0.02
Top 2 0.87± 0.01 0.88± 0.02 0.87± 0.02
Top 3 0.88± 0.01 0.88± 0.01 0.87± 0.02
Top 4 0.88± 0.01 0.88± 0.01 0.87± 0.02
Top 5 0.88± 0.01 0.88± 0.01 0.87± 0.02
Top 10 0.88± 0.01 0.88± 0.02 0.88± 0.01
Top 50 0.88± 0.01 0.88± 0.02 0.88± 0.01
Top 100 0.88± 0.01 0.88± 0.02 0.88± 0.01

C. STATE-OF-THE-ART COMPARISON
This Section compares and discusses the results obtained by
the proposed framework and the state-of-the-art baselines.
Observe that: (i) based on the analyses carried out in the
previous Sections, only the best results for each dataset and
scenario are presented. (ii) the baselines were conceived
using the same network selected for the classification part of
the proposed framework. Precisely, for the AiRound dataset,
baselines are based on the SKNet model [26] (for the aerial
missing scenario) and on the DenseNet [25] (for the ground
missing scenario). For the CV-BrCT, all baselines were
conceived based on the VGG network [24]. (iii) all results
presented here were verified using a fold-by-fold paired t-test
with confidence level of 95%.
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TABLE 3. Results of the proposed method and baselines for AiRound dataset.

Method Available Data F1 Score

No Fusion (Lower bound)
Ground

(Aerial Missing)

0.76± 0.00
EmbraceNet [9] 0.69± 0.03
CCA [5] 0.75± 0.02
Ours 0.79± 0.00

No Fusion (Lower bound)
Aerial

(Ground Missing)

0.83± 0.00
EmbraceNet [9] 0.83± 0.00
CCA [5] 0.83± 0.01
Ours 0.85± 0.01

Fully-Paired (Upper bound) Aerial + Ground 0.91± 0.01

Tables 3 and 4 present the results for the AiRound and CV-
BrCT dataset, respectively. Overall, the proposed approach
outperformed all baselines except, as expected, the upper
bound one. In fact, for the CV-BrCT dataset, the difference
between the results achieved by the proposed framework
and the fully-paired (upper bound) baseline for the ground
missing scenario is almost irrelevant. However, for all other
scenarios and datasets, this difference is considerable, which
shows that there is still room for improvements.

TABLE 4. Results of the proposed method and baselines for CV-BrCT
dataset.

Method Available Data F1 Score

No Fusion (Lower bound)
Ground

(Aerial Missing)

0.72± 0.01
EmbraceNet [9] 0.53± 0.04
CCA [5] 0.72± 0.02
Ours 0.73± 0.02

No Fusion (Lower bound)
Aerial

(Ground Missing)

0.86± 0.01
EmbraceNet [9] 0.77± 0.03
CCA [5] 0.86± 0.01
Ours 0.88± 0.01

Fully-Paired (Upper bound) Aerial + Ground 0.89± 0.02

Aside from this, it is interesting to observe that, for both
datasets, the obtained results for the aerial missing scenario
are worse than the outcomes for the ground missing scenario.
As previously explained, this may be justified by the fact that
most aerial images tend to provide more context information
(than ground scenes), thus assisting in the classification pro-
cess and, consequently, yielding better results.

VI. CONCLUSIONS
In this paper, we propose a novel framework to handle multi-
view image classification with missing data. The proposed
approach is composed of two main parts: (i) a retrieval one,
responsible for recovering similar samples that can be used
to fill the missing data gap of the input query image; and
(ii) a classification one, that fuses information extracted from
both the input image and the top-k retrieved scenes in order
to perform the final classification.

Experiments were conducted using two multi-view aerial-
ground datasets (AiRound and CV-BrCT) and considering
two distinct scenarios: one in which aerial images are consid-

ered absent and another where ground scenes are considered
missing. Results have showed that the proposed technique
is efficient and robust. Precisely, it achieved state-of-the-art
results in both datasets outperforming all baselines, except
for the fully paired (upper-bound) one. Additionally, experi-
mental outcomes showed that the strategy of combining in-
formation from multiple (i.e., top-k) images to fill the missing
data gap (instead of using just the top retrieved image, as
commonly employed in the literature [7], [5]) is remarkably
effective.

As future work, we intend to evaluate the proposed ap-
proach using other datasets with more (than two) views per
instance. We also would like to assess other retrieval methods
as well as other classification networks.
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