Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34770
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE‐CHRONO reconstruction
Author(s): Clark, Chris D
Ely, Jeremy C
Hindmarsh, Richard C A
Bradley, Sarah
Ignéczi, Adam
Fabel, Derek
Ó Cofaigh, Colm
Chiverrell, Richard C
Scourse, James
Benetti, Sara
Bradwell, Tom
Evans, David J A
Roberts, David H
Burke, Matt
Callard, S Louise
Contact Email: tom.bradwell@stir.ac.uk
Keywords: Geology
Archeology
Ecology, Evolution, Behavior and Systematics
Issue Date: Oct-2022
Date Deposited: 13-Dec-2022
Citation: Clark CD, Ely JC, Hindmarsh RCA, Bradley S, Ignéczi A, Fabel D, Ó Cofaigh C, Chiverrell RC, Scourse J, Benetti S, Bradwell T, Evans DJA, Roberts DH, Burke M & Callard SL (2022) Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE‐CHRONO reconstruction. <i>Boreas</i>, 51 (4), pp. 699-758. https://doi.org/10.1111/bor.12594
Abstract: The BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British–Irish Ice Sheet between 31 000 and 15 000 years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500 days of field investigation yielding 18 000 km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8 m sea level equivalent occurred at 23 ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22 ka. The tipping point of deglaciation at 22 ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British–Irish Ice Sheet is now the world’s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling.
DOI Link: 10.1111/bor.12594
Rights: © 2022 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Notes: Additional authors: Alicia Medialdea, Margot Saher, David Small, Rachel K. Smedley, Edward Gasson, Lauren Gregoire, Niall Gandy, Anna L. C. Hughes, Colin Ballantyne, Mark D. Bateman, Grant R. Bigg, Jenny Doole, Dayton Dove, Geoff A. T. Duller, Geraint T. H. Jenkins, Stephen L. Livingstone, Stephen McCarron, Steve Moreton, David Pollard, Daniel Praeg, Hans Petter Sejrup, Katrien J. J. Van Landeghem, Peter Wilson
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Boreas-2022-Clark.pdfFulltext - Published Version33.93 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.