Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClark, Chris Den_UK
dc.contributor.authorEly, Jeremy Cen_UK
dc.contributor.authorHindmarsh, Richard C Aen_UK
dc.contributor.authorBradley, Sarahen_UK
dc.contributor.authorIgnéczi, Adamen_UK
dc.contributor.authorFabel, Dereken_UK
dc.contributor.authorÓ Cofaigh, Colmen_UK
dc.contributor.authorChiverrell, Richard Cen_UK
dc.contributor.authorScourse, Jamesen_UK
dc.contributor.authorBenetti, Saraen_UK
dc.contributor.authorBradwell, Tomen_UK
dc.contributor.authorEvans, David J Aen_UK
dc.contributor.authorRoberts, David Hen_UK
dc.contributor.authorBurke, Matten_UK
dc.contributor.authorCallard, S Louiseen_UK
dc.description.abstractThe BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British–Irish Ice Sheet between 31 000 and 15 000 years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500 days of field investigation yielding 18 000 km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8 m sea level equivalent occurred at 23 ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22 ka. The tipping point of deglaciation at 22 ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British–Irish Ice Sheet is now the world’s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling.en_UK
dc.relationClark CD, Ely JC, Hindmarsh RCA, Bradley S, Ignéczi A, Fabel D, Ó Cofaigh C, Chiverrell RC, Scourse J, Benetti S, Bradwell T, Evans DJA, Roberts DH, Burke M & Callard SL (2022) Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE‐CHRONO reconstruction. <i>Boreas</i>, 51 (4), pp. 699-758.
dc.rights© 2022 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium. This is an open access article under the terms of the Creative Commons Attribution License (, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_UK
dc.subjectEcology, Evolution, Behavior and Systematicsen_UK
dc.titleGrowth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE‐CHRONO reconstructionen_UK
dc.typeJournal Articleen_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderNatural Environment Research Councilen_UK
dc.contributor.funderEuropean Commission (Horizon Europe)en_UK
dc.description.notesAdditional authors: Alicia Medialdea, Margot Saher, David Small, Rachel K. Smedley, Edward Gasson, Lauren Gregoire, Niall Gandy, Anna L. C. Hughes, Colin Ballantyne, Mark D. Bateman, Grant R. Bigg, Jenny Doole, Dayton Dove, Geoff A. T. Duller, Geraint T. H. Jenkins, Stephen L. Livingstone, Stephen McCarron, Steve Moreton, David Pollard, Daniel Praeg, Hans Petter Sejrup, Katrien J. J. Van Landeghem, Peter Wilsonen_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.contributor.affiliationBritish Antarctic Surveyen_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationDurham Universityen_UK
dc.contributor.affiliationUniversity of Liverpoolen_UK
dc.contributor.affiliationUniversity of Exeteren_UK
dc.contributor.affiliationUlster Universityen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationDurham Universityen_UK
dc.contributor.affiliationDurham Universityen_UK
dc.contributor.affiliationScottish Environment Protection Agency (SEPA)en_UK
dc.contributor.affiliationNewcastle Universityen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
local.rioxx.authorClark, Chris D|0000-0002-1021-6679en_UK
local.rioxx.authorEly, Jeremy C|en_UK
local.rioxx.authorHindmarsh, Richard C A|en_UK
local.rioxx.authorBradley, Sarah|en_UK
local.rioxx.authorIgnéczi, Adam|en_UK
local.rioxx.authorFabel, Derek|en_UK
local.rioxx.authorÓ Cofaigh, Colm|en_UK
local.rioxx.authorChiverrell, Richard C|en_UK
local.rioxx.authorScourse, James|en_UK
local.rioxx.authorBenetti, Sara|en_UK
local.rioxx.authorBradwell, Tom|0000-0003-0947-3309en_UK
local.rioxx.authorEvans, David J A|en_UK
local.rioxx.authorRoberts, David H|0000-0002-5976-8423en_UK
local.rioxx.authorBurke, Matt|en_UK
local.rioxx.authorCallard, S Louise|en_UK
local.rioxx.projectProject ID unknown|Natural Environment Research Council|
local.rioxx.projectProject ID unknown|European Commission (Horizon Europe)|en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Boreas-2022-Clark.pdfFulltext - Published Version33.93 MBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.