Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34740
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva-Perez, Cristianen_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorCameron, Iainen_UK
dc.date.accessioned2023-01-31T11:31:44Z-
dc.date.available2023-01-31T11:31:44Z-
dc.date.issued2022en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34740-
dc.description.abstractMonitoring crop development is of crucial importance to ensure sustainable management practices while promoting efficient land use. The ability of satellite remote sensing data to cover large areas offers a robust tool to aid this task. In this article, we propose a filtering framework, which uses Gaussian-process-based dynamic and observation models, an unscented Kalman filter, and the fusion of multitemporal SENTINEL-1 and SENTINEL-2 data to monitor crop biophysical variables. This method complements state-of-the-art filtering frameworks given its ability to learn models and uncertainties from data and to exploit the imagery temporal dimension. This enables the method to be transferable to other crop types, biophysical variables, and locations. We test the methodology to track asparagus below-ground carbohydrates and the season crop age and to forecast crop key dates. The amount of carbohydrates stored below ground in the plant's root system is highly associated with the yield of asparagus and the ability to establish a healthy canopy. Validation with ground truth showed that the use of more than one SENTINEL-1 orbit and SENTINEL-2 data provided the best tracking performances and a reliable way for handling missing data from a sensor. Under this configuration, the method achieves a mean absolute error (MAE) of 1.802 Brix degrees (surrogate for carbohydrates). Similarly, it can retrieve crop age and forecast harvest date, with the MAE of six days. Remotely tracking below-ground carbohydrates may contribute toward reducing the destructive sampling required for its measurement in the field.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationSilva-Perez C, Marino A & Cameron I (2022) Learning-Based Tracking of Crop Biophysical Variables and Key Dates Estimation From Fusion of SAR and Optical Data. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</i>, 15, pp. 7444-7457. https://doi.org/10.1109/jstars.2022.3203248en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectAtmospheric Scienceen_UK
dc.subjectComputers in Earth Sciencesen_UK
dc.titleLearning-Based Tracking of Crop Biophysical Variables and Key Dates Estimation From Fusion of SAR and Optical Dataen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/jstars.2022.3203248en_UK
dc.citation.jtitleIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_UK
dc.citation.issn2151-1535en_UK
dc.citation.issn1939-1404en_UK
dc.citation.volume15en_UK
dc.citation.spage7444en_UK
dc.citation.epage7457en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderUK Space Agencyen_UK
dc.author.emailarmando.marino@stir.ac.uken_UK
dc.citation.date31/08/2022en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationEnvironment Systems LTDen_UK
dc.identifier.wtid1841228en_UK
dc.contributor.orcid0000-0002-6843-5022en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2022-08-29en_UK
dcterms.dateAccepted2022-08-29en_UK
dc.date.filedepositdate2022-12-22en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSilva-Perez, Cristian|0000-0002-6843-5022en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorCameron, Iain|en_UK
local.rioxx.projectProject ID unknown|UK Space Agency|http://dx.doi.org/10.13039/100011690en_UK
local.rioxx.freetoreaddate2022-12-22en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2022-12-22|en_UK
local.rioxx.filenamePerez-Marino-Cameron-IEEEJSTAEORS-2022.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2151-1535en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Perez-Marino-Cameron-IEEEJSTAEORS-2022.pdfFulltext - Published Version5.01 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.