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Abstract—Monitoring crop development is of crucial importance
to ensure sustainable management practices while promoting effi-
cient land use. The ability of satellite remote sensing data to cover
large areas offers a robust tool to aid this task. In this article, we
propose a filtering framework, which uses Gaussian-process-based
dynamic and observation models, an unscented Kalman filter, and
the fusion of multitemporal SENTINEL-1 and SENTINEL-2 data
to monitor crop biophysical variables. This method complements
state-of-the-art filtering frameworks given its ability to learn mod-
els and uncertainties from data and to exploit the imagery tem-
poral dimension. This enables the method to be transferable to
other crop types, biophysical variables, and locations. We test the
methodology to track asparagus below-ground carbohydrates and
the season crop age and to forecast crop key dates. The amount
of carbohydrates stored below ground in the plant’s root system
is highly associated with the yield of asparagus and the ability to
establish a healthy canopy. Validation with ground truth showed
that the use of more than one SENTINEL-1 orbit and SENTINEL-2
data provided the best tracking performances and a reliable way for
handling missing data from a sensor. Under this configuration, the
method achieves a mean absolute error (MAE) of 1.802 Brix degrees
(surrogate for carbohydrates). Similarly, it can retrieve crop age
and forecast harvest date, with the MAE of six days. Remotely
tracking below-ground carbohydrates may contribute toward re-
ducing the destructive sampling required for its measurement in
the field.

Index Terms—Agriculture, asparagus, crop development, data
fusion, forecasting, gap filling, Gaussian processes (GPs), Kalman
and dynamic filtering, SENTINEL-1, SENTINEL-2, synthetic
aperture radar (SAR), uncertainty quantification.

I. INTRODUCTION

IN LINE with population growth, demand for agricultural
commodities is also increasing. Technological tools to en-

sure sustainable management practices are key to reduce the
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negative impact on people and the environment [1]. Thanks
to its large area coverage and the growing availability of free
data, satellite remote sensing has been increasingly used in
recent decades for agricultural information extraction. These
insights are then used to inform decision-making by differ-
ent stakeholders in the agricultural supply chain [2], [3], [4].
Agricultural fields monitoring with satellite-based synthetic
aperture radar (SAR) has gained importance in recent years
(see [4]) due to the ability of these sensors to acquire images
under moderately adverse weather conditions, including the
presence of clouds and the independence of sunlight. Con-
sequently, it is possible to achieve a systematic acquisition
system able to avoid data gaps and create consistent time
series.

Regarding monitoring crop development with SAR, several
methodologies have been reported in the literature. These in-
clude methods in which the SAR response to a given crop stage
is manually analyzed and insights are extracted based on expert
knowledge [5], [6]. More recent methods use machine learning
algorithms trained on ground truth and SAR data to create a
mapping function between the SAR images and the crop stages
[7], [8]. Wishart-distance-based crop stage classifiers [9] have
also been proposed with the aim of exploiting the full polari-
metric information for phenology classification. However, these
methods are not designed to include data from other sensors
(i.e., multispectral satellites) and could improve the exploitation
of the data’s temporal dimension. Similarly, these methods lack
the ability to model the crop dynamics in order to hind-cast and
forecast crop development.

To overcome these limitations, other studies proposed to
retrieve crop biophysical variables by tracking the state of
a dynamic system (i.e., the crop) and used well-established
tracking algorithms such as Kalman filter and particle filter
(PF). An example of this methodology is presented in [10],
where Vicente-Guijalba et al. report to successfully perform
the near-real-time tracking of cereal crops phenology using an
extended Kalman filter (EKF). An improvement of this method
is proposed in [11], where a comparison between an EKF and a
PF is performed. The authors conclude that the PF provides more
flexibility to model the crop dynamics and allows the method to
achieve better accuracy. In this study, the methodology is also
used to forecast crop key dates, specifically, the date when a crop
will be ready for harvest. In [12], sensor fusion is performed by
using TerraSAR-X backscatter intensity in combination with a
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Landsat-derived vegetation index [normalized difference vege-
tation index (NDVI)] to estimate rice phenology. The authors
report that using backscatter intensity to complement NDVI
in periods when no optical images are available increases the
accuracy achieved by the algorithm. More recently, a PF has
been utilized to track canola phenology [13]. The algorithm
fuses multifrequency SAR data from the RADARSAT-2 and
TerraSAR-X satellites and temperature. In this case, the attention
is focused on the potential of the method for predicting crop
flowering, since based on the humidity at this stage, farm-
ers can make informed decisions regarding their management
practices.

These applications demonstrate the potential for crop moni-
toring with dynamic filtering. In addition to achieving high accu-
racy and enabling sensor fusion, the methodologies are also suit-
able for near-real-time monitoring purposes given the ability of
dynamic filtering for real-time applications [14], [15]. However,
the dynamic models (i.e., the function that models the crop dy-
namics over time) and the observation models (i.e., the function
that relates crop biophysical variables to satellite observations)
used within the filtering strategy so far can still benefit from
improvements.

Indeed, in [12], the dynamic and observation models are
parametric models based on double logistic functions, which
despite offering adequate results for rice fields in a specific
location are not likely to be transferable to other biophysical
variables, crop types, or locations. While, in [13], the accuracy
for estimating flowering is high, the approach for modeling
crop dynamics is specific for their local conditions preventing
the method to be transferable. In this case, to model the crop
dynamics (i.e., dynamic model), it is assumed that phenology
can be estimated from the accumulated temperature in the year
or in the agricultural season, measured in growing degree days
(GDDs) [16]. Note that, under this assumption, the transfer-
ability of the method to other crop biophysical variables is
limited. This is because the function that relates temperature
and a given crop biophysical variable is not always known.
A different approach, which proposes to use historical data to
model dynamic and observation models, is used in [10] and [11].
The models were fitted using splines [17]. While the authors
report achieving adequate fitting, the uncertainties associated
with model predictions are learned from a totally different
modeling step. Considering the key role of these uncertainties
in a dynamic filtering, an approach to model them accurately
is crucial. Recently, Mascolo et al. [18] proposed a grid-based
filter (GBF) to monitor rice phenology. As mentioned by the
authors, this approach represents the optimal and closed-form
solution to the Bayesian estimation problem when the state
variables are discrete and finite, such as the case of phenological
scales. However, for the purpose of the present article, since the
approximate carbohydrate content (i.e., Brix) is a continuous,
and not a discrete, variable, the GBF solution is not a feasible
solution. In [19], a spatiotemporal phenology estimation of
paddy rice is introduced using a dynamic filtering strategy. The
authors propose a thresholding algorithm for transplanting date
retrieval and a hierarchical tree for a first approximation of a
parcel phenology. This is then used as a prior in a PF setting for

the estimation of the phenology’s posterior distributions. Inter-
estingly, the authors highlight the importance of knowing when
the season started (transplanting date) for the successful deploy-
ment of the dynamic filtering approach. Note that, in this case,
the transplanting date retrieval requires a separate algorithm to
the Bayesian filtering. Consequently, obtaining this information
while avoiding this extra step also represents an opportunity for
improvement.

In this article, we propose a Gaussian-process-based un-
scented Kalman filtering (GP-UKF) framework that uses freely
available multitemporal SENTINEL-1 data and learns non-
linear and not parametric dynamic and observations models
of the filter using Gaussian processes (GPs) [20]. Learning
these models and their predictive uncertainties simultaneously
allows the GP-UKF to be transferable to other crop vari-
ables, locations, and crop types. The framework also performs
active–passive satellite sensor fusion, incorporating multitem-
poral SENTINEL-2 data when available. The GP-based dy-
namic model is utilized to fill gaps due to missing remote
sensing observations and to forecast the crop development.
We present an application for tracking below-ground aspara-
gus plant carbohydrates (highly related to the crop yield) and
the seasonal crop age (also known as the days after season
start). In addition, the forecasting capabilities of the GP-UKF
framework are tested to determine when a field will be ready for
harvest.

The rest of this article is organized as follows. Section II
introduces the test site and ground and remote sensing datasets
used in this study. Section III presents a brief introduction to
the theoretical background required by the GP-UKF. Section IV
introduces the setup used for the near-real-time implementation
of the algorithms. Section V presents the results obtained track-
ing below-ground asparagus plants carbohydrate and seasonal
crop age and the results of forecasting when a field will be ready
for harvest. The strengths and limitations of the current study
are discussed in Section VI. Finally, Section VII concludes this
article.

II. TEST SITE AND DATASETS

A. Test Site

Fig. 1 shows a SENTINEL-1 and SENTINEL-2 image of
the test site acquired on January 4, 2019. The asparagus fields
located in the Peruvian north coast considered a total of 432
parcels for the analysis. The plants (Asparagus officinalis L.)
used in the crop were grown in a nursery and later transplanted
to the fields, which consist of dry sandy soil with a subtropical
climate. The temperature peaks in February, reaching averages
of up to 26 ◦C and falls in August with average temperatures
of 15◦. This synchronizes with the highest and lowest solar
radiation levels [21].

Given the mild winters, the crop does not naturally reach
senescence and is instead able to grow all year round. Given this,
farmers can grow two agricultural seasons per year. The growth
stage of individual parcels is not necessarily synchronized, and
as a consequence, different parcels could be in different growth
stages.
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Fig. 1. Test site. (Left) SENTINEL 2 RGB image acquired on January 4, 2019. (Center) SENTINEL-2 GNDVI image. (Right) Multitemporal SENTINEL-1
RGB composite; red: VH on November 17, 2018, green: VH on January 4, 2019, and blue: ratio between the VH image acquired on January 4, 2019 and that
acquired on November 17, 2018.

TABLE I
SENTINEL-1 ACQUISITION GEOMETRIES AVAILABLE IN THE TEST SITE

B. Datasets

1) Ground Truth: Given the key role that below-ground car-
bohydrates (CHO) play in the crop yield, periodic samples are
taken in the field to monitor a parcel’s CHO evolution over time.
However, the samples collected do not correspond directly to
carbohydrate levels. Although there exists an analytical method
known as the anthrone method for measuring soluble carbo-
hydrate in milligrams per gram of dry weight [22], it is too
demanding and not commercially viable [23]. This led to the
development of an approximation of root carbohydrate content
derived from the refractive index (Brix%) of asparagus root
sap measured with a refractometer [23], [24]. According to this
method, the carbohydrate content can be estimated by a linear
regression model that uses Brix% as input [23], [24], [25]. This
process was carried out as a tool to monitor the crop development
in the 432 fields analyzed in a period covering from June 2018
to December 2020.

2) SENTINEL-1 Images: The level-1 GRD SENTINEL-1
data utilized were downloaded from the Google Earth Engine
platform [26]. Interferometric wide swath data are used, from
which the backscattering coefficients at the VH and the VV chan-
nels are obtained. The preprocessing steps applied by GEE in-
clude orbit file update, GRD border noise removal, thermal noise
removal, radiometric calibration, and terrain correction [26].
Three acquisition geometries are available in the study site,
as shown in Table I, covering the period from June 2018 to
December 2020.

3) SENTINEL-2 Images: Orthorectified and radio-corrected
SENTINEL-2 level 1C imagery available in the GEE platform
were used. A cloud masking preprocessing step was applied
exploiting the SENTINEL-2 QA60 band, masking out opaque
clouds and cirrus clouds. A period covering from June 2018 to
December 2020 is selected to generate vegetation indices time
series at 10-m resolution. This results in a total of 71 images
used for the analysis. However, these images are concentrated in
consecutive images for short periods of time (cloud-free months)
and prolonged gaps in cloudy months, as will be mentioned in
Section V-A2.

4) Remote Sensing and Ground Truth Time Series: Fig. 2
shows how the above-ground processes involving spear growth
and fern establishment are connected with the below-ground
carbohydrates stored in the plant root system. It shows the mean
values of VH backscatter intensity, green normalized differ-
ence vegetation index (GNDVI) [27], [28], and Brix degrees
(ground truth) time series. Six agricultural seasons for five
typical parcels, which have the same management practices,
are shown. The green and red vertical dashed lines mark the
season beginning and end of the fern establishment, respectively.
The time between a red and green vertical line corresponds to
harvest. In asparagus, below-ground carbohydrates are produced
through the canopy via photosynthesis and consumed when new
stems grow from the root system. This cycle of production and
consumption of carbohydrates is shown in the bottom plot of
Fig. 2.

III. METHODOLOGY

Crop development monitoring can be seen as a particular case
of monitoring a dynamical system, in which the crop devel-
opment is considered a time-varying process observed through
noisy and/or missing remote sensing observations [10], [29]. A
set of D biophysical variables, such as phenology, leaf area in-
dex, and biomass (among others), is assumed to describe the crop
condition at a given point in time. Specifically, the crop state can



SILVA-PEREZ et al.: LEARNING-BASED TRACKING OF CROP BIOPHYSICAL VARIABLES AND KEY DATES ESTIMATION 7447

Fig. 2. Time series for several parcels of SENTINEL-1 VH backscatter (top) and GNDVI derived from SENTINEL-2 data (middle). Time between green and red
lines corresponds to fern growth and establishment. Time between red and green lines corresponds to harvest. A cycle of CHO charge and discharge, approximated
with Brix% results from each above-ground development cycle or season (bottom).

Fig. 3. Schematic of a dynamic filtering algorithm to track the state variables.
The filter (UKF) updates the dynamic model predictions based on deviations
between observations and predicted observations. Dashed lines are optional
paths executed only when a new vector of remote sensing observations yk arrives
(new image).

be described by knowing the state of these variables, which are
in turn known as state variables. Typically, and throughout this
article, the state variables are represented by theD-dimensional
random vector xk, where k refers to the time step at which the
system is.

This approach enables the use of widely known tools for
dynamical systems state estimation by means of the well-known
Bayesian filtering algorithms [30]. The Kalman filter [31] is
the most used in practice, for example, for systems with linear
evolution in time and process states that are Gaussian distributed.
For the concrete purpose of this article, a filtering algorithm
aims at tracking the crop state variables by fusing observations
from freely available active–passive multitemporal satellite data
sources and data-driven models of the crop state variable dy-
namics. As shown in Fig. 3, the filter does this by updating or
modifying the predicted distribution from the dynamic models
P (xk|xk−1), by a factor derived from the deviations between
the vector of remote sensing observations received at time

step k (yk) and these same observations predicted given the
observation model predictions P (ŷk|x̂k).

The filter output P (xk|y1:k) represents the posterior prob-
ability density function of the states at time k, given all the
observations until time k. This is achieved by assuming that the
Markovian property for state estimation applies [30]. Note, how-
ever, that this is different from exploiting multitemporal data, as
will be shown in Section III-C. The difference between x̂k andxk
is that x̂k represents prior predictions from the dynamic model,
and xk is the filter output (posterior), this is, the predictions after
being updated by the filter. The same rationale applies for the
vector of remote sensing observations yk and the predictions
of remote sensing observations ŷk from the observation model.
After a filter output, the previous state is updated to the current
state (xk−1 = xk), providing the filter the ability to perform
recursive state estimation. In Fig. 3, the dashed lines indicate that
these paths are optional and are executed only when the vector of
remote sensing observations yk is available, this is, when a new
image arrives. In this sense, if no remote sensing observations are
available, the filter output corresponds directly to the dynamic
model predictions. This enables the estimation of the crop state
variables between remote sensing images (nowcasting and/or
gap filling) and, through recursive estimation, forecasting of the
crop state variables.

Apart from the filter itself, two key components of the filtering
algorithms are the dynamic and the observation models [30]. The
state variable evolution over time is modeled with a probabilistic
dynamic model, represented by

xk = f(xk−1) + qk. (1)

In (1), the system state at a given date k can be estimated as a
function of the previous state xk−1 using the nonlinear function
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f(.) and considering the additive GP noise qk ∼ N (0, Qk) ac-
counting for the uncertainty when modeling the system dynam-
ics with the process noise covariance matrix Qk. The nonlinear
function f(.) describes the laws that govern the dynamic system
evolution, which is a function deriving future states following
from the current states. Also note that the dynamic model of (1)
results in the conditional probability distribution P (xk|xk−1).

The observation model is in charge of modeling a sensor
response to a given crop state and is represented by the E-
dimensional vector of sensor observations yk. TheE dimensions
in this case correspond to the number of features used to observe
the crop state with sensors, which corresponds in this article to
backscatter intensities derived from SENTINEL-1 data and/or
the vegetation indices from SENTINEL-2 data. The sensor
response yk can be predicted as a function of the system state
xk by means of the probabilistic observation model

yk = gith(xk) + rk (2)

where gith(.) is a nonlinear function mapping from system state
to remote sensing observations measured by the sensor ith, and
rk ∼ N (0, Rk) is the additive Gaussian measurement noise
accounting for the uncertainty around the predicted observa-
tions. Note that the probabilistic observation model of (2) results
in the conditional probability distribution P (yk|xk) describing
the likelihood of getting the observations yk given the state
xk. The subscript ith stresses the fact that there should be as
many nonlinear functions gith(.) as sensors observing the crop
development. This is to ensure the correct fusion of sensors.

A. Learning Dynamic and Observations Models

Typically, the dynamic and observations models are rep-
resented by parametric models (i.e., equations) derived from
having an in-depth knowledge of the forces driving the evolution
of system states and the response of each of the satellite sensor
to the system states [30]. For crop monitoring, this is associated
with knowledge regarding the dynamics of each state variable,
for each individual crop type and under the specific conditions
of each location. It requires identifying the adequate number of
factors impacting the evolution of state variables over time and
the complex relationship between them. Unfortunately, even if
this process can be done for a test site, it is difficult and/or ex-
pensive to scale everywhere this may be needed. Given the large
variety of variables (e.g., crop type, location, and wavelength in
the case of SAR measurements), models are very specific and
not transferable to other crop types or locations.

Instead of using parametric models that may experience the
aforementioned issues, a Gaussian process regression (GPR)
has been proposed in engineering applications with the so-
called Gaussian process state space (GPSS) models to learn
the transition and observation models from data [32], [33]. A
key advantage of using GPR to learn these models, besides its
nonparametric form and flexibility, is that they provide uncer-
tainty with each predicted estimation. This is a vital requirement
of the Bayesian filtering algorithms. In fact, it provides a state-
dependent uncertainty, for instance with increased uncertainty in
those regions where the variability increases or in those regions

where insufficient data are used to train the models. Refer to
Appendix A for an introduction to GPRs.

B. Training of Dynamic Models

The dynamic model must predict the conditional distribution
P (xk|xk−1) corresponding to the prediction of the current state
given the previous state. In this article, we use GPs to obtain
the prediction of this probability distribution. The output of
the GPR is a Gaussian distribution of the form, P (xk|xk−1) ∼
N (xk|μk,Σk). The training of the dynamic model is achieved
in two steps: First, we obtain the typical state variables behavior
over time, and second, we learn to predict a state distribution at
time step k given the state distribution at step k − 1.

In order to estimate a typical state variable behavior over
time, we collect a training set of ground truth samples from
several agricultural seasons, either several parcels or more than
one season of the same parcel (i.e., for perennial crops). Then,
we fit a nonlinear nonparametric GPR using this set as output
and using the crop age or days after the season started (DaS) as
input. Once the typical evolution is obtained, the key role of the
dynamic model is to predict a state distribution at step k given
the state distribution at time step k − 1. A second GPR model
learns to predict the expected change to the current state in order
to advance to a subsequent state following the typical dynamics
previously obtained. To train this model, a dataset of the form
Ddyn = [xk−1, (xk − xk−1)] is required, where the input xk−1

corresponds to the expected value of the crop state variables
at time step k − 1, and the output expression (xk − xk−1) is
the expected change to advance to a subsequent state. The
conditional probability distributionP (xk|xk−1) can be obtained
as

P (xk|xk−1) ∼ N (μk, Σk)

μk = μk−1 +Δμ

μk = μk−1 + GPµ([μk−1])

Σk = GPvar([μk−1]) (3)

where GPµ corresponds to the mean and GPvar corresponds to
the variance obtained from a GP model using the dataset Ddyn

and (7) and (8) (see Appendix A). Note that using this procedure
results in a “one-step ahead” prediction. However, by recursively
using (3), multiple-step-ahead predictions can be obtained. This
is a key property since it allows us to predict values of the state
variables when no remote sensing observations are available
(i.e., in a daily basis) and allows us to fill gaps, for instance, for
SENTINEL-2 and/or to forecast the expected evolution of the
state variables given the current states.

C. Training of Observation Models

As mentioned previously in this section, the observation
model oversees modeling a sensor response to a given crop
state (represented by the state variables). A GPR is trained to
predict the conditional probability P (yk|xk) ∼ N (yk/μk,Σk)
of the remote sensing observations given the crop state at time
step k. The remote sensing observations predicted by this model
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are the same remote sensing observations used to monitor the
crop. In previous works, the authors have reported the use of
several features derived from backscatter and PolSAR decom-
positions of a single image (16 features in [11] and 12 features
in [13] or, more generally, p PolSAR features). In this article,
we propose to use the temporal dimension of the observations
to compensate for the lack of Quad-PolSAR data. This way, a
vector of remote sensing observations contains a sequence of the
last N past available images instead of the p PolSAR features
of a single image. Considering a sequence of observations is
in fact desired since it provides the information of not only
the crop state in a single date but also in the period covered.
In this sense, the observation model predicts the sequence of
the past N observations available in a predefined period (e.g.,
the previous N -VH backscatter or N -GNDVI measurements
available in the past 100 days) given the current crop state. It
is important for the observation models to be able to predict
the observations and their uncertainty for any arbitrary day in
the past (within the predefined period). This way, we do not
constrain the model to predict exclusively every 6 or 12 days for
the case of SENTINEL-1 or five days for SENTINEL-2. This
is beneficial for optical SENTINEL-2 data, where there may
be gaps in the observations acquired in cloudy days resulting
in an irregular number of days between observations. To train
this model, a dataset of the form Dobs = [(xTk ,DaSk−j), yk−j ]
is required, where xTk corresponds to the expected value of the
crop state variables at time step k, DaSk−j is the number of
days in the past when we wish to predict an observation, and
the output yk−j are the predicted remote sensing observations
acquired k − j days ago. Note that the model is used N times
to form the sequence of the past N observations, for j that
goes from zero to the N past observations. In this case, zero
corresponds to the observation at time k andN the oldest of the
N observations in the sequence. The output of an observation
model can be obtained as

P (yk|xk) ∼ N (μk−j , Σk−j)

for j = 0, . . ., N :

μk−j = GPµ[(x
T
k ,DaSk−j)]

Σk−j = GPvar[(x
T
k ,DaSk−j)]. (4)

Sensor fusion is achieved by training separate models for
each sensor used (e.g., one for SENTINEL-1 and another for
SENTINEL-2) and selecting the model to use for predicting the
sequence of past N observations to be the same as the sensor
providing the new observation that arrives at time k.

D. Unscented Kalman Filter (UKF) With GP Dynamic and
Observation Models

The UKF is an extension to the Kalman filter to applications
where the dynamic and observation models are nonlinear. This
is the case in this article since these models are learned with the
nonlinear and nonparametric GPRs.

The UKF first finds a Gaussian approximation to the non-
Gaussian distributions resulting from propagating the states

xk−1 and xk through the nonlinear models of (1) and (2), re-
spectively. Then, the analytical solution of the Bayesian filtering
equations [30] for the case of linear and Gaussian systems,
i.e., the Kalman filter equations, can be applied to compute the
approximated system state. In the UKF, the approximation to
Gaussian distributions is made with the aid of the unscented
transform (UT). The UT selects deterministically a set of points
(known as sigma points) in the input distribution [xk−1 of (1)
or xk in (2)], in order to characterize it [30]. These points are
then propagated through the nonlinear models, i.e., a prediction
is made for each sigma point using a GP-based model, and a
weighted mean and covariance of the output or target distribution
is computed from them.

Algorithm 1 in Appendix B presents a detailed description
of the combination between the original UKF [34] and the GP-
based dynamic and observation models.

IV. NEAR-REAL-TIME MONITORING SETUP

A. State Variables

Two variables are utilized to characterize the crop over time,
below-ground plant carbohydrates, and the season crop age in
days or also known as the number of days after the season started.
This results in the state vector xk = [Brixk,DaSk]

T

1) Below-Ground Plant Carbohydrates: Asparagus crop
yield is directly linked with the amount of plant carbohydrates
stored in a plant root system [35]. The carbohydrates are, in
turn, linked to the amount of canopy available to intercept
sunlight, the solar radiation in the site, and the efficiency of
the plant transforming the latter into carbohydrates [35]. In this
article, we consider tracking the Brix% quantity since this is the
variable taken in the field and available as ground truth. Since
this quantity is constantly monitored, there are sufficient samples
available for training and testing, providing spatial and temporal
diversity.

2) Crop Age or Days After the Season Started: Several stake-
holders of the agricultural supply chain are interested in knowing
the current season starting date. These can include insurance
companies and governments as a requirement prior to paying in-
demnities to farmers. Knowing DaS is also required to compute
the GDDs for cases when phenology is estimated with a thermal
calendar [16]. Similarly, it provides rough estimations of future
key dates, such as flowering or harvest. Previous studies have
considered the DaS as a key feature and design an independent
algorithm for its estimation [11], [19], [36]. Here, we show that
this variable can be included as a variable to be tracked with
a filtering framework as new remote sensing observations are
available. This also provides useful information for dynamic
and observation models to be able to disentangle similar remote
sensing observations at different times of the agricultural season.

B. Dynamic Model

1) Predicting Asparagus Crop State Distribution at Time Step
k Given the State Distribution at Time Step k − 1: With regard
to the DaS, the dynamic model consists in increasing by one
day the previous prediction of DaS. For the Brix state variable,
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the GP-based dynamic model uses as input the previous state
vector and provides as output the change required to advance
to the next Brix state [see (3)]. In this sense, the model uses a
training dataset of the form D = [(DaSk−1,Brixk−1),ΔBrixk],
where the model inputs DaSk−1 and Brixk−1 correspond to the
expected values of the state variables at time step k − 1, and
ΔBrixk is the expected change given the previous state (obtained
as Brixk − Brixk−1).

C. Observation Model

An observation model predicts the conditional probability dis-
tribution P (yk|xk) corresponding to a sensor’s response given
the crop state (represented by the state variables). As introduced
in Section III-C, in this article, we propose to use a vector
of observations conformed by a sequence of N observations
available in the past 100 days. The period of 100 days is chosen
since it covers more than half of an agricultural season. Then,
the sequence of N observations is predicted using (4), with
xk = [Brixk,DaSk]

T .
In order to achieve the fusion of active and passive satel-

lite remote sensing data, separate models must be trained for
SENTINEL-1 and for SENTINEL-2. Then, during near-real-
time operation, a model is chosen to be compatible with the ob-
servations received, i.e., using the model of SENTINEL-1 when
SENTINEL-1 observations arrive or the model of SENTINEL-2
when SENTINEL-2 observations arrive.

If a single feature for each sensor is used, for instance, a
sequence of N -VH backscatter or N -GNDVI measurements,
a single output GPR can be trained. If multiple features are
considered, such as the VH, VH/VV, dual-Pol RVI, or others
for the case of SENTINEL-1, a multiple output GPR [37], [38]
can be trained instead. Note that as in the case of the dynamic
model, using independent models for each feature results in
uncorrelated noise covariances, or in other words, the matrix
Σk−i is a diagonal matrix. In this article, both the VH backscatter
and the ratio VH/VV are considered, and individual models are
trained to predict each feature. For the case of SENTINEL-2, the
GNDVI and the Modified Chlorophyll Absorption in Reflective
Index (MCARI) [39], [40], as well as training individual models
to predict each feature, are used. Other vegetation indices were
not included since linear correlation between them and the
GNDVI and MCARI were identified. In the case that an SAR
and optical images are acquired on the same date, the system
will process them sequentially, following their acquisition time.
Consequently, it will handle this case without any extra consid-
erations.

D. Filter Initialization

A prior belief of the crop state variables is required to ini-
tialize the filter. An assumption based on the SENTINEL-1 VH
backscatter is made to provide an initial estimate of the DaS and
the Brix degrees. The DaS zero is determined as the nearest date
in the previous 100 days of the monitoring starting date, in which
the VH backscatter was lower than −23 dB. If all the values are
higher than−23 dB in the previous 100 days, the crop is assumed
to be in maturation and a DaS of 120 is adopted. The Brix degrees

TABLE II
EVALUATION OF DIFFERENT SENSOR(S) AND DYNAMIC MODEL COMBINATIONS

are then initialized with the typical starting value for DaS zero
(median of Brix ground truth samples when DaS is zero). If a
DaS of 120 is adopted, the typical Brix value for DaS 120 is
used. Since the filter is initialized with a Gaussian probability
distribution, a standard deviation of 20 days for the DaS and
a standard deviation of 2.5 Brix degrees for the below-ground
carbohydrates are used. Note that the described assumption is
not necessarily required if large variances to the prior belief or
initial probability distribution are adopted. In this case, after
seeing new observations, the filter updates the state variables so
that they are in agreement with the observations, thus converging
to the actual states. However, the described assumption allows
the filter to converge faster.

V. RESULTS

A. Unscented Kalman Filtering With GP-Based Dynamic and
Observation Models

Several combinations between SENTINEL-1 acquisition ge-
ometries and SENTINEL-2 data were evaluated, as shown in
Table II. The GP-UKF algorithm described in the Appendices
is then used for filtering.

1) Tracking Crop State Variables Only With the Dynamic
Model: Fig. 4 shows the result of running the GP-UKF filter
without any remote sensing observations but only using the dy-
namic model to predict recursively and track the below-ground
plant carbohydrates and the crop age.

As can be seen in the red dots, the filter is able to provide daily
predictions that are similar to the ground truth samples (black
crosses). These predictions follow the typical trends expected for
the evolution of the state variables confirming that the dynamic
model effectively captured their behavior. Note that when the
season end is detected, the DaS is reset to zero, as well as the state
initial uncertainty. Note, however, that the predictions do not
adapt to the particular conditions of every season as no remote
sensing observations are being considered. These conditions
could include, among others, variations in management practices
as well as variations in crop development due to environmental
conditions. As an example, note that after September 2019,
the dynamic model predictions are not synchronized with the



SILVA-PEREZ et al.: LEARNING-BASED TRACKING OF CROP BIOPHYSICAL VARIABLES AND KEY DATES ESTIMATION 7451

Fig. 4. GP-UKF using dynamic model only, without remote sensing observations.

Fig. 5. GP-UKF using dynamic model and SENTINEL-2 data. Data from before the vertical dashed line are used for training and data after are used for testing.

ground truth. This is due to an atypical season start and end
being changed according to management practices. This, in turn,
reduces the overall GP-UKF performance if observations are not
available.

2) Tracking Crop State Variables With SENTINEL-2: If
SENTINEL-2 observations are considered, Fig. 5 shows that the
GP-UKF adapts better to the particularities of each agricultural
season. In this case, the filter uses the SENTINEL-2 observations
when available and, based on the deviations between them and
the predictions from the GP-based observation model for the
SENTINEL-2 features, adjusts the predictions of the dynamic
model. If observations are not available, for instance due to
cloudy days, the filter is still able to provide a prediction filling
these gaps. The uncertainty in the predictions decreases signif-
icantly when several observations are consecutively received,
such as between February and May of 2020. On the contrary,
when a gap in the SENTINEL-2 observations occurs, the filter
fills the gaps and the uncertainty associated with these predic-
tions increases as is the case between July and September of
2020. In fact, notice that a seasonal pattern can be observed in the
uncertainty, where in the coldest months of the year when is also
cloudier (second semester of each year), the uncertainty is larger

than in the hotter months where less clouds are normally present.
It is expected then that during cloudy months, the GP-UKF relies
mostly on the dynamic model, whereas in the cloud-free months,
it relies on the observations. Note also that the uncertainty also
increases when recursively using the dynamic model to forecast,
as shown after the last observation available in February 2021.

3) Tracking Crop State Variables With One Acquisition Ge-
ometry of SENTINEL-1: Given the SAR capabilities of acquisi-
tion at day and night and almost all-weather conditions, long
time series can be obtained. Fig. 6 shows the result of the
GP-UKF using one of the SENTINEL-1 acquisition geometries
available for the test site (orbit 91 in ascending pass). Visually
inspecting Fig. 6, it can be seen that the predictions are close to
the ground truth even though the observations can be noisy. If we
focus on predictive accuracy, we can notice that SENTINEL-1
seems to be less accurate than SENTINEL-2 in cloud-free
months. However, in the cloudy months, the more consistent
time series of observations of SENTINEL-1 provides better
predictions than SENTINEL-2. This suggests that the vegetation
indices from a multispectral satellite may be more easily asso-
ciated with the canopy development than the backscatter from
SENTINEL-1, but this benefit is lost with the data gaps. Note that
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Fig. 6. GP-UKF using dynamic model and SENTINEL-1. Data from before the vertical dashed line are used for training and data after are used for testing.

Fig. 7. GP-UKF using a dynamic model, all SENTINEL-1 acquisition geometries, and SENTINEL-2.

the predictive uncertainty using a single orbit of SENTINEL-1
is relatively constant during the whole monitoring period.

4) Tracking Crop State Variables With All Acquisition
Geometries of SENTINEL-1 and SENTINEL-2: When all the
acquisition geometries of SENTINEL-1 and the SENTINEL-2
data are used, as shown in Fig. 7, the results obtained are
more precise, and the uncertainty when tracking the crop
state variables is low. The accuracy in the season from
January to June of 2020, for example, improves compared to
the previously shown cases, confirming the added value of
combining SENTINEL-2 and the three SENTINEL-1 orbits.
On the other hand, the uncertainty that was high when filling the
gaps if using SENTINEL-2 data only is now reduced, thanks
to the SENTINEL-1 data being present. Another synergy
achieved using active–passive sensor fusion can be seen at the
end of October 2020. The estimation of the accumulated Brix

degrees at the end of the season is better predicted than in
any other case. In this case, as in the other seasons, the Brix
degree level at the end of the season prior harvest is a key
informative factor about the potential asparagus yield in that
season.

B. Performance Evaluation

The ground dataset is split in two parts from October 2019
to December 2020 covering more than two agricultural sea-
sons for each of the 116 analyzed parcels. Three metrics are
used as indicators of performance: the root-mean-square error
(RMSE), the Pearson correlation coefficient (r2), and the mean
absolute error (MAE). The results of these metrics validating the
performance of the GP-UKF applied to each of the analyzed
cases of Table II are shown in Table III.
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TABLE III
GP-UKF PERFORMANCE EVALUATION

Using all the acquisition geometries of SENTINEL-1 together
with the SENTINEL-2 data when available provides the best
results. In this case, the GP-UKF is able to track the asparagus
crop state variables with an MAE of 1.802 Brix degrees and six
days. Note that while r2 for DaS is high achieving 0.97, it is not
as high for Brix degrees achieving only 0.58. This difference
may be related to the fact that the Brix samples are significantly
more prone to error when measuring them, resulting in noisy
training and testing data. In fact, in order to reduce this error
in the ground truth, more samples are required at parcel level
for the sampled population to correctly represent the Brix level.
However, this process is expensive and resources consuming.
The RMSE achieved in this case is 2.287 and eight days, similar
to the error obtained with the MAE.

In general, based on the results of Table III, adding more
satellite sensors improves the performance partly due to the
improvement of the temporal resolution observing the crop and
partly due to the complementary information of the active–
passive data fusion. The errors retrieving Brix degrees obtained
with the other cases are not substantially different, as shown
in Table III. The last row (line) represents the performance
evaluation if all the predictions corresponded to a line equal to
the median of the training ground truth samples. This is only for
testing that the filtering is indeed better than predicting always
the median Brix and DaS values. The row Dyn_model represents
the case when no remote sensing observations are considered but
only the dynamic model, as presented in Section V-A1.

For the case of DaS as well as for Brix degree, the poorest
results are obtained when using orbits 18 and 142 of SENTINEL-
1, both individually and in combination with other orbits or
with SENTINEL-2. This can be associated with the number of
images available being considerably lower than for orbit 91, as
can be seen in Table I. In fact, using SENTINEL-2 data only
(S2) even with the associated data gaps has better performance
than orbits 18 (S1_18) and 142 (S1_142), with an MAE of
2.083 compared to 2.508 and 2.531 for these two SENTINEL-1
orbits. However, orbit 91 (S1_91) individually presents better
performance than SENTINEL-2 data with an MAE of 1.931

and six days. Note that this is practically the same performance
achieved using all the acquisition geometries available (S1_all),
which achieves an MAE of 1.905 and six days, possibly meaning
that the majority of the performance achieved corresponds to
information provided by orbit 91 of SENTINEL-1. The value of
the active–passive sensor fusion can be seen when considering
that the best four performances are achieved when using both
SENTINEL-1 and SENTINEL-2. In these four cases, orbit 91
is always present confirming the value of a consistent flow of
SENTINEL-1 data (not fully achieved with orbits 18 and 142).
An interesting case to highlight here is that using orbit 91 and
SENTINEL-2 (S1_91+S2) performs better than using all the
SENTINEL-1 acquisition geometries (S1_all), confirming the
value of SENTINEL-2 even with its data gaps in cloudy months.
Note that this case (S1_91+S2) practically achieves the same
performance as the best case. However, using all the orbits of
SENTINEL-1 (or more than one) and SENTINEL-2 provides a
more robust system in the case of intermittent operation of any
acquisition orbit, as was the case in this test site with orbits 18
and 142.

C. Multitemporal Prediction Maps: DaS and Brix Degrees

Fig. 8 shows the results of retrieving the crop state variables
with the GP-UKF when using the active–passive sensor fusion
for the whole farm. These four dates show the estimation over
time of Brix degrees. As can be seen, not all the parcels are
in the same development stage since farmers can manage this,
taking advantage of the all year-round food production potential
offered by the local climatological conditions.

D. Key Date Estimation

The same procedure to fill gaps or make one-step-ahead pre-
dictions can be recursively performed for multiple-step-ahead
prediction or forecast. This gives the GP-UKF the possibility
to estimate the occurrence of future crop key dates. Accurately
predicting the date when a parcel will be ready for harvest is
essential to plan human and material resources required for
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Fig. 8. Multitemporal Brix degrees retrieved with the GP-UKF using SENTINEL-1 and SENTINEL-2 data. (a) February 1, 2019. (b) March 1, 2019. (c) March
29, 2019. (d) May 10, 2019.

harvest and to plan the capacity in the plant to process the
harvested asparagus. This is particularly important considering
the all-year round production of asparagus. The crop is assumed
to be ready for harvest when the accumulation of below-ground
plant carbohydrates in the root system is maximum. Therefore,
the procedure to test the GP-UKF capabilities for harvest date
prediction is as follows: Using the case that provides the best
results for tracking, i.e., using the three acquisition geometries of
SENTINEL-1 and SENTINEL-2, the GP-UKF tracks the crop
state variables until the last season in 2020. Then, four cases are
considered: the filter stops the tracking when the season crop
age is 0, 30, 60, and 90 days. The GP-based dynamic model
is utilized to recursively forecast from these points when the
maximum Brix degree in the next 200 days will occur. This date
is then extracted as the expected harvest date for the parcels
of asparagus included in the analysis. A key point to highlight
is that this date, in practice, can be affected by management
decisions since it could be accelerated or delayed depending on
contractual obligations or market intelligence. Therefore, since
the date provided here is an estimation based only on the crop
condition, it may in some cases disagree with the real date for
days or in few cases even weeks. Table IV shows the results from
forecasting the harvest date for the three cases considered: As
can be seen, the lower the error predicting harvest date, the closer
the parcel is to the real harvest (DaS = 90). This is because the
filter has seen more observations to correctly track the crop state

TABLE IV
HARVEST DATE FORECAST PERFORMANCE (IN DAYS)

variables up to that point. Conversely, forecasting the harvest
date from DaS = 0 corresponds to predicting without the aid of
remote sensing observations, but only using the dynamic model.
Note than even when predicting harvest date 30 days after the
season started, an MAE of six days is achieved. This is already
an acceptable error for the practical purpose of this task.

Despite not accurately knowing when the season started but
assuming a window of one month where it could have started,
and after receiving observations for two months (60 days), the
GP-UKF is able to forecast the date when the crop will be ready
to harvest with an error (MAE) of four days.

VI. DISCUSSION

This article introduced a filtering framework designed to track
below-ground asparagus plant carbohydrates and the season
crop age with fusion of freely available and multitemporal
SENTINEL-1 and SENTINEL-2 data. The method proposed
that complements what other studies have suggested are the
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advantages of a filtering framework, particularly in relation to
accuracy, sensor fusion, and key date estimation [10], [12],
[13]. It was shown that retrieving Brix degrees and DaS with
SENTINEL-2 data could be more accurate than SENTINEL-1,
if no data gaps existed. However, if a SENTINEL-1 acquisition
geometry provides constant data (S_91), it is overall more
accurate than SENTINEL-2. Note, however, that, even when
SENTINEL-2 data gaps exist, the GP-based dynamic model is
able to fill these gaps and provide an estimation of the tracked
crop state variables and to forecast crop key dates. The com-
bination of active–passive data provided the best performances
and was found to be valuable to better predict the Brix degree
of a parcel at the end of the season. This is one of the most
important moments in the season for this prediction, since it is
highly correlated with the crop yield [23], [41]. As can be seen in
Table III, using one orbit of SENTINEL-1 that provides system-
atic acquisitions and in fusion with SENTINEL-2 (S1_91+S2)
provides better performance than using all three available acqui-
sition geometries of SENTINEL-1. This helps corroborate the
value of the active–passive sensor fusion. In addition, including
more than one SENTINEL-1 orbit with SENTINEL-2, besides
of providing the best performance, contributes to having a more
reliable operational system.

In all the cases, nonlinear and nonparametric dynamic and
observation models are learned, allowing the GP-UKF to, if
desired, be transferred to other crop state variables, crop types,
locations, and wavelengths if training data are available. This is a
clear improvement with respect to previous approaches that use
filtering frameworks with parametric models [12], [13]. Note
also that in this article, we proposed to estimate the DaS directly
as part of the filtering instead of designing a separate algorithm
as has been done in previous works (see [6] and [36]).

Compared to the traditional Kalman filter, the GP-UKF is
more accurate as it is able to learn nonlinear dynamic and
observation models. Compared to the EKF as in [10], the UKF
has been shown to be at least as accurate as the EKF [34]. Note
that propagating the states through the GP-based models results
in a non-Gaussian distribution [33]. However, the GP-UKF
approximates them to Gaussian in order to use the original
Kalman filter equations. In this regard, while the GP-UKF is less
computationally demanding, it may be at a slight disadvantage
compared to the PFs of [11] and [13]. Nevertheless, a pragmatic
approach can be taken accepting this potential loss of accuracy,
as it allows for a significant improvement in reducing the destruc-
tive sampling damage of this high value crop. Future work will
address this potential disadvantage. Further research will also
focus on extending the present method as a crop development
anomaly detector. This would be by detecting when the crop
behavior is deviating from the expected crop growth learned by
the dynamic models.

VII. CONCLUSION

In order to provide an alternative to current destructive and
expensive field sampling of below-ground asparagus plant car-
bohydrate, this article presents a novel, data-driven, unscented
Kalman filtering framework. It fuses multitemporal and freely

available SENTINEL-1 and SENTINEL-2 data to track Brix
degrees as a surrogate of carbohydrates and the season crop age
and to forecast crop key dates. GPRs are trained with multiyear
ground truth to learn the dynamic and observation models and
their corresponding uncertainties. After testing the performance
of the GP-UKF with unseen field samples, an MAE of 1.802 Brix
degrees is obtained fusing the three SENTINEL-1 acquisition
geometries available in the test site and the SENTINEL-2 data
when available. The GP-UKF achieved an MAE of six days for
crop age retrieval and an MAE of six days for forecasting the
date for a parcel being fit for harvest.

The GP-UKF proposed here is also able to perform daily
predictions, fill data gaps, and forecast key crop dates while
remaining robust to individual sensor failures. As a data-driven
approach, the method can be applied to other crop biophysical
variables and crop types.

APPENDIX

A. Gaussian Process Regression

Given the importance of the GPR to learn dynamic and obser-
vations models, this appendix presents a basic introduction to its
foundations. For an in-depth study of GPRs, the reader is referred
to [20]. Note that in the literature, the X and y variables are
normally used to denote, respectively, the inputs and outputs of
a GPR. In this article, however, since these variables are used for
the system states and vector of observations, the training inputs
for the GPR are represented by the matrix χχχ, while the outputs
are represented by the vector ψ. In this context, given a set of
inputsχχχ = [d1, d2, . . . , dn]

T , where di is aD-dimensional input
vector example and a set of outputsψ = [ψ1, ψ2, . . . , ψn]

T , with
ψi being the corresponding scalar output, a GPR considers the
following nonparametric model for regression:

ψi = h(di) + ε (5)

where h represents the unknown mapping function between
di and ψi and ε ∼ N (0, σ2

f ) corresponds to the additive noise
model with variance σ2

n assumed to be corrupting the observed
values. Rather than using a parametric model and estimating
its parameters from the data in order to obtain a regression
function, h(.) is assumed to be a GP (i.e., a Gaussian distribution
over functions) [20]. A GP is fully specified by a mean func-
tion m(.) and a positive-semidefinite covariance function K(.)
(also known as the kernel). The covariance function determines
the key characteristics that the mean function takes, such as
smoothness, periodicity, etc., and is chosen depending on the
modeling problem at hand [20]. In this article, we consider the
exponentiated quadratic kernel k(di, dj)

k(di, dj) = σ2
fexp

(
−1

2
(di − dj)

TΛ2(di − dj)

)
(6)

whereΛ is a diagonal matrix of the length-scale hyperparameters
and σ2

f is the variance of the function h defined in (5). At a test
point(s) d∗ evaluated with the model h(.), the GP estimates an
outputψ∗ with mean and variance using the predictive equations
(7) and (8), respectively. These equations are derived from the
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Algorithm 1: GP-UKF Algorithm.

1 Algorithm GP-UKF(μk−1, |Σk−1, yk):
2 χk−1 = (μk−1 μk−1 + γ

√
Σk−1 μk−1 − γ

√
Σk−1)

3 for i = 0, . . ., 2D:
χ
[i]
k = χ

[i]
k−1 + GPµ([χ

[i]
k−1], Ddyn) [see (3)]

4 Qk = GPvar([μk−1, Ddyn])

5 μ̂k =
∑2n

i=0W
[i]
m χ

[i]
k

6 Σ̂k =
∑2n

i=0W
[i]
c (χ

[i]
k − μ̂k)(χ

[i]
k − μ̂k)

T +Qk

7 χk = (μ̂k μ̂k + γ
√

Σ̂k μ̂k − γ
√

Σ̂k)
8 for i = 0, . . ., 2D:

Ŷ
[i]
k = GPµ([χ

[i]
k ], Dobs) [see (4)]

9 Rk = GPvar([μ̂k, Dobs])

10 ŷk =
∑2D

i=0W
[i]
m Ŷ

[i]
k

11 Sk =
∑2D

i=0W
[i]
c (Ŷ

[i]
k − ŷk)(Ŷ

[i]
k − ŷk)

T +Rk

12 Σ̂x,y
k =

∑2D
i=0W

[i]
c (χ

[i]
k − μ̂k)(Ŷ

[i]
k − ŷk)

T

13 Kk = Σ̂x,y
k S−1

k

14 μk = μ̂k +Kk(yk − ŷk)
15 Σk = Σ̂k −KkSkK

T
k

16 return(μk,Σk)

conditional distribution of the test points d∗, given the observed
values χχχ and ψ. The reader is directed to [20] for the complete
derivation

mh(d∗) = GPµ = kT∗ (K + σ2
eI)

−1ψ = kT∗ βββ (7)

σ2
h(ψ∗) = GPvar = k∗∗ − kT∗ (K + σ2

eI)
−1k∗. (8)

In (7) and (8), the termk∗ = k(χχχ, d∗) is a vector defined by kernel
values between the inputs χ and test point(s) d∗, K = k(di; dj)
is the n × n kernel matrix of the training input values, and
k∗∗ := k(d∗; d∗) is the kernel function evaluated at the test points
d∗. In (7),βββ is often used in the literature to shorten the equation,
withβββ := (K + σ2

eI)
−1ψ. The length-scale hyperparameters Λ

and varianceσ2
f in the kernel function are learned by maximizing

the log marginal likelihood of the training outputs given the
inputs [20].

B. Unscented Kalman Filtering Combination With GP-Based
Dynamic and Observation Models

Dynamic filtering algorithms approach the filtering problem
in two steps: prediction and update [30]. Algorithm 1 begins the
prediction in step 2 with the UT, generating a set of (2D + 1)
so-called sigma points to characterize the distribution of the pre-
vious state xk−1 ∼ N (μk−1,Σk−1). In this step, the parameter
γ is associated with the spread of the sigma points around the
distribution mean [30] andD is the number of state dimensions.

In Step 3, each of the sigma points is propagated through the
GP-based dynamic model [see (3)], while in Step 4, the additive
process noise is estimated from the predicted uncertainty of the
GP-based dynamic model. In Steps 5 and 6, the predicted mean
μ̂k and the predicted covariance Σ̂k , as originally proposed in the
UKF [34], are estimated. In these Steps, Wi(m) and Wi(c) are
constant weights required to perform a weighted combination

of the propagated or predicted sigma points [30]. The update
stage of the GP-UKF algorithm begins in Step 7 by generating
again a set of sigma points, now characterizing the predicted
state distribution of Steps 5 and 6. Then, this set is propagated
through the GP-based observation model in Step 8 to obtain
the expected observations given the state (see Section III-C),
while the observation noise is also obtained from the GP-based
observation model in Step 9. Subsequently, in Steps 10 and 11,
again, a weighted combination of the propagated sigma points
is made to obtain the mean and covariance of the predicted
observations. Step 12 computes the cross covariance of the
predicted state and predicted observations, as proposed in the
seminal UKF algorithm. Step 13 computes the so-called Kalman
gain as in the original Kalman filter algorithm, and Steps 14 and
15 provide the state meanμk and the covarianceΣk, conditioned
on the sensed observations yk
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