Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/34567
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, Guoyuen_UK
dc.contributor.authorFan, Hongxiangen_UK
dc.contributor.authorOliver, David Men_UK
dc.contributor.authorDai, Yibinen_UK
dc.contributor.authorLi, Hengpengen_UK
dc.contributor.authorShi, Yuejieen_UK
dc.contributor.authorLong, Haifeien_UK
dc.contributor.authorXiong, Kangningen_UK
dc.contributor.authorZhao, Zhongmingen_UK
dc.date.accessioned2022-09-21T00:04:58Z-
dc.date.available2022-09-21T00:04:58Z-
dc.date.issued2022-11en_UK
dc.identifier.other113843en_UK
dc.identifier.urihttp://hdl.handle.net/1893/34567-
dc.description.abstractKarst watersheds accommodate high landscape complexity and are influenced by both human-induced and natural activity, which affects the formation and process of runoff, sediment connectivity and contaminant transport and alters natural hydrological and nutrient cycling. However, physical monitoring stations are costly and labor-intensive, which has confined the assessment of water quality impairments on spatial scale. The geographical characteristics of catchments are potential influencing factors of water quality, often overlooked in previous studies of highly heterogeneous karst landscape. To solve this problem, we developed a machining learning method and applied Extreme Gradient Boosting (XGBoost) to predict the spatial distribution of water quality in the world's most ecologically fragile karst watershed. We used the Shapley Addition interpretation (SHAP) to explain the potential determinants. Before this process, we first used the water quality damage index (WQI-DET) to evaluate the water quality impairment status and determined that CODMn, TN and TP were causing river water quality impairments in the WRB. Second, we selected 46 watershed features based on the three key processes (sources-mobilization-transport) which affect the temporal and spatial variation of river pollutants to predict water quality in unmonitored reaches and decipher the potential determinants of river impairments. The predicting range of CODMn spanned from 1.39 mg/L to 17.40 mg/L. The predictions of TP and TN ranged from 0.02 to 1.31 mg/L and 0.25–5.72 mg/L, respectively. In general, the XGBoost model performs well in predicting the concentration of water quality in the WRB. SHAP explained that pollutant levels may be driven by three factors: anthropogenic sources (agricultural pollution inputs), fragile soils (low organic carbon content and high soil permeability to water flow), and pollutant transport mechanisms (TWI, carbonate rocks). Our study provides key data to support decision-making for water quality restoration projects in the WRB and information to help bridge the science:policy gap.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationXu G, Fan H, Oliver DM, Dai Y, Li H, Shi Y, Long H, Xiong K & Zhao Z (2022) Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model. Environmental Research, 214 (Part 4), Art. No.: 113843. https://doi.org/10.1016/j.envres.2022.113843en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Xu G, Fan H, Oliver DM, Dai Y, Li H, Shi Y, Long H, Xiong K & Zhao Z (2022) Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model. Environmental Research, 214, Art. No.: 113843. https://doi.org/10.1016/j.envres.2022.113843 © 2022, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectEcologically fragile karst basinen_UK
dc.subjectWater quality assessmenten_UK
dc.subjectXGBoost regressionen_UK
dc.subjectShapley additive explanationsen_UK
dc.subjectDeterminant analysisen_UK
dc.titleDecoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning modelen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2023-08-03en_UK
dc.rights.embargoreason[ER-22-971_R1.pdf] Publisher requires embargo of 12 months after publication.en_UK
dc.identifier.doi10.1016/j.envres.2022.113843en_UK
dc.identifier.pmid35931190en_UK
dc.citation.jtitleEnvironmental Researchen_UK
dc.citation.issn0013-9351en_UK
dc.citation.volume214en_UK
dc.citation.issuePart 4en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.author.emaildavid.oliver@stir.ac.uken_UK
dc.citation.date02/08/2022en_UK
dc.contributor.affiliationChinese Academy of Sciencesen_UK
dc.contributor.affiliationChinese Academy of Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationTianjin University, Chinaen_UK
dc.contributor.affiliationChinese Academy of Sciencesen_UK
dc.contributor.affiliationChinese Academy of Sciencesen_UK
dc.contributor.affiliationGuizhou Universityen_UK
dc.contributor.affiliationGuizhou Normal Universityen_UK
dc.contributor.affiliationKing's College Londonen_UK
dc.identifier.scopusid2-s2.0-85136613722en_UK
dc.identifier.wtid1835710en_UK
dc.contributor.orcid0000-0001-7626-1344en_UK
dc.contributor.orcid0000-0002-6200-562Xen_UK
dc.date.accepted2022-07-04en_UK
dcterms.dateAccepted2022-07-04en_UK
dc.date.filedepositdate2022-08-22en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorXu, Guoyu|en_UK
local.rioxx.authorFan, Hongxiang|0000-0001-7626-1344en_UK
local.rioxx.authorOliver, David M|0000-0002-6200-562Xen_UK
local.rioxx.authorDai, Yibin|en_UK
local.rioxx.authorLi, Hengpeng|en_UK
local.rioxx.authorShi, Yuejie|en_UK
local.rioxx.authorLong, Haifei|en_UK
local.rioxx.authorXiong, Kangning|en_UK
local.rioxx.authorZhao, Zhongming|en_UK
local.rioxx.projectProject ID unknown|National Natural Science Foundation of China|en_UK
local.rioxx.freetoreaddate2023-08-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2023-08-02en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2023-08-03|en_UK
local.rioxx.filenameER-22-971_R1.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0013-9351en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
ER-22-971_R1.pdfFulltext - Accepted Version2.57 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.