
Decoding river pollution trends and their 1 

landscape determinants in an ecologically 2 

fragile karst basin using a machine 3 

learning model 4 

Hightlight 5 

  Spatial and temporal patterns of river water quality in Wu jiang River basin (WRB) were 6 

analyzed from 2014 to 2019 7 

Machine learning model (XGBoost) was developed to predict robust spatially-distributed 8 

continuous water quality patterns 9 

SHAP was used as a powerful model interpreter to decode the black box of a ML model 10 

indicating the drivers of water quality deterioration 11 

   Geological and climatic vulnerabilities drive management decisions for control of pollution in 12 

these critical areas 13 

Abstract 14 

Karst watersheds accommodate high landscape complexity and are influenced by both 15 

human-induced and natural activity, which affects the formation and process of runoff, sediment 16 

connectivity and contaminant transport and alters natural hydrological and nutrient cycling. 17 

However, physical monitoring stations are costly and labor-intensive, which has confined the 18 

assessment of water quality impairments on spatial scale. The geographical characteristics of 19 

catchments are potential influencing factors of water quality, often overlooked in previous studies 20 

of highly heterogeneous karst landscape. To solve this problem, we developed a machining learning 21 

method and applied Extreme Gradient Boosting (XGBoost) to predict the spatial distribution of 22 

water quality in the world's most ecologically fragile karst watershed. We used the Shapley Addition 23 

interpretation (SHAP) to explain the potential determinants. Before this process, we first used the 24 

water quality damage index (WQI-DET) to evaluate the water quality impairment status and 25 

determined that CODMn, TN and TP were causing river water quality impairments in the WRB. 26 

Second, we selected 46 watershed features based on the three key processes (sources-mobilization-27 

transport) which affect the temporal and spatial variation of river pollutants to predict water quality 28 
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in unmonitored reaches and decipher the potential determinants of river impairments. The predicting 29 

range of CODMn spanned from 1.39 mg/L to 17.40 mg/L. The predictions of TP and TN ranged from 30 

0.02 to 1.31 mg/L and 0.25 to 5.72 mg/L, respectively. In general, the XGBoost model performs 31 

well in predicting the concentration of water quality in the WRB. SHAP explained that pollutant 32 

levels may be driven by three factors: anthropogenic sources (agricultural pollution inputs), fragile 33 

soils (low organic carbon content and high soil permeability to water flow), and pollutant transport 34 

mechanisms (TWI, carbonate rocks). Our study provides key data to support decision-making for 35 

water quality restoration projects in the WRB and information to help bridge the science:policy gap. 36 

Keywords: Ecologically fragile karst basin; Water quality assessment; XGBoost regression; Shapley 37 

additive explanations; Determinant analysis. 38 

 39 

Introduction 40 

Anthropogenic interferences have dramatically hindered natural hydrological and nutrient 41 

cycles, in turn threatening river water quality in many countries and regions across the world 42 

(Mandaric et al., 2018; Ockenden et al., 2017). Controlling pollutant emissions has become the focus 43 

of many global environmental policies (Cardinale, 2011; Mandaric et al., 2018; Vorosmarty and 44 

Sahagian, 2000). Water quality can be impacted by anthropogenic factors (such as the land use and 45 

land cover changes) (Baker, 2003; Liu et al., 2018; Yan et al., 2021a). Urbanization has led to an 46 

increase in impervious surfaces, which alters hydrological flow paths and deliver pollutants to the 47 

river network more efficiently resulting in additional pressure and degradation of river water quality 48 

(Marinoni et al. 2013). Intensification of agricultural activities may result in increased nutrient loads 49 

due to fertilization and changes in surface soil properties. 50 

Geographical factors (e.g. climate change, atmospheric deposition, geology and topography, 51 

soil types, catchment hydrology, land use/cover and land management) are summarized as three key 52 

process factors (i.e., sources, mobilisation and delivery) that define how determinants spatially and 53 

temporally affect water quality in a watershed (Alvarez-Cabria et al., 2016a; Fan and Shibata, 2015; 54 

Heckmann and Schwanghart, 2013; Lintern et al., 2018; Liu et al., 2021; Noori et al., 2012; Varanka 55 

et al., 2015). Identifying the influences of watershed geographical characteristics on river water 56 

quality is helpful to understand the evolution of river ecosystem in this region because these key 57 

factors vary widely across different geographical regions (Liu et al., 2021; Mainali and Chang, 2018). 58 



Karst is globally distributed landscape and supports approximately 20% of the world's 59 

population (Ford and Williams, 2007; Hartmann et al., 2014). The Wu jiang River basin (WRB) is 60 

located in the world's largest continuous landscapes of karst, which is deemed as an ecological 61 

barrier for the Yangtze River Basin and also defined as one of the most ecologically fragile regions 62 

in the world (Xu et al.,2021). Land use patterns (e.g. sloped planting and overgrazing) interact with 63 

the heterogeneous karst landscape composition and configuration in complex ways (Varanka et al., 64 

2015; Xu et al., 2019). As a result, karst landscapes are more fragile and this can influence the 65 

formation and processes of runoff, sediment connectivity and the delivery of pollutants from land 66 

to water (Ai et al., 2015; Heckmann and Schwanghart, 2013; Yan et al., 2021b). Further, 67 

hydrological processes in karst landscapes deviate from typical responses in non-karst environments 68 

and this can lead to river water quality impairments differentiating from those of the plains (Deng, 69 

2020; Liu et al., 2020). Due to the influence of subtropical humid monsoon, rainfall in this region 70 

is seasonally unevenly distributed and heavy rainfall events are a frequent occurrence, which 71 

exacerbates the mobilization and transport of pollutants (Powers et al., 2016; Singh et al., 2005a; 72 

Sinha and Michalak, 2016). In recent years, the nutrient balance of the WRB has become a 73 

controversial issue due to the construction of cascade dams (Li and Ji, 2016; Winemiller et al., 2016). 74 

The geographical characteristics and human disturbance of WRB lead to serious water pollution and 75 

complex environmental response in karst areas.  76 

Field assessments of water quality can support catchment managers and stakeholders in 77 

identifying spatio-temporal sensitive areas of managed landscapes and help to evaluate the benefits 78 

and risks of water management strategies in priority areas (Altenburger et al., 2015; Huang et al., 79 

2021; Yi et al., 2017). However, most water quality assessments are limited to particular river 80 

reaches due to the costs associated with data collection; therefore, many low-order streams are not 81 

evaluated, which can limit understanding of water quality challenges in a watershed (Altenburger 82 

et al., 2015; Ding et al., 2016; Mello et al., 2018). Thus, physical process-based model simulation 83 

can complement field monitoring investigations. Models, e.g., HSPF and HYPE, SWAT, AGNPS 84 

or semi-distributed process based model SPARROW or INCA can simulate complex nonlinear 85 

interactions between nutrient transport dynamics and biogeochemical processes (Arhonditsis et al., 86 

2007; Hashemi et al., 2016; Mayorga et al., 2010; Singh et al., 2005b). Such physical process-based 87 

models often preclude the identification of dominant processes operating within a watershed due to 88 



uncertainties associated with parameter calibration across a large watershed (Badham et al., 2019; 89 

Jakeman et al., 2006; Knoben et al., 2020). The complexity of environmental processes often results 90 

in physical process-based models being costly and labor-intensive inputs of dataset collection. 91 

Moreover, the karst zone under the thin soil layer in karst regions has high permeability and 92 

accommodates a complex subsurface hydrological system which makes the parameterization of 93 

such models difficult and hinders the transferability of mechanical process approaches to karst areas 94 

(Fiorillo et al., 2015; Hartmann et al., 2015; Li et al., 2021; Malago et al., 2016). On the contrary, 95 

data-driven machine learning (ML) models are recognized as an effective alternative method and 96 

offer advantages for modeling complex nonlinear systems over deterministic and statistical models 97 

when handling multi-source data for prediction of river water quality due to improved model 98 

interpretability, prediction accuracy, and reduced computational cost (Najah Ahmed et al., 2019; 99 

Sun and Scanlon, 2019; Wang et al., 2021b; Zou et al., 2019).  100 

As an optimized distributed gradient lifting algorithm, Extreme Gradient Boosting (XGBoost) 101 

delivers high accuracy and fast processing time (Lundberg et al., 2020). Indeed, XGBoost 102 

outperformed several other machine learning techniques (e.g., Gradient Boosting and Deep Neural 103 

Network, Bayesian Regularized Neural Network and Random Forest algorithm) to predict 104 

probabilities, and is especially used when dealing with spatial data (Just et al., 2020; Mokoatle et 105 

al., 2019). Tree-based ML models are often regarded as unexplainable black box models (Moreira 106 

et al., 2020; Parsa et al., 2020). However, data-driven machine learning models suffer from several 107 

drawbacks. First, ML models often require a large amount of training data to obtain robust 108 

performance (Kratzert et al., 2019). Second they are still not as easily interpretable as traditionally-109 

used physics-based conceptual hydrologic models (Höge et al., 2022). Shapley Additive 110 

Explanations (SHAP) is considered as a state-of-the-art model interpretation to decode the black-111 

box of ML models. It can connect optimal credit allocation with local explanations using the classic 112 

Shapley values from game theory and their related extensions (Adadi and Berrada, 2018; Lundberg 113 

and Lee, 2017; Molnar, 2020). This helps to understand the magnitude and direction of the influence 114 

of input variables on the output variable. 115 

The overarching aim of our study, therefore, was to investigate the spatial distribution of river 116 

water quality impairments in the WRB and decipher how watershed features, both anthropogenic 117 

and natural, impair water quality. Firstly, we compiled a complete time series trend (2014–2019) 118 



dataset of river water quality (14,845 records from 207 water quality sampled sites) to identify 119 

spatio-temporal water quality impairments and screen the key variables that contribute to water 120 

quality impairment in the WRB. We hypothesized that watershed landscape attributes are important 121 

in interpreting water quality at different regional scales in the WRB. Then a powerful ML method 122 

was developed to predict water pollution concentrations in unmonitored reaches and we used the 123 

SHAP value to determine the significant landscape covariates of water quality in the WRB. 124 

2. Materials and methods 125 

2.1 Study area       126 

The WRB (25°39′13″~25°41′00″N, 105°36′30″-105°46′30″E) is located in southwest China, 127 

Guizhou province, which comprises a total area of 80300 km2, see Fig.1. Though located in an area 128 

of subtropical humid monsoon climate, with average annual precipitation of 1300 mm, there is a 129 

serious shortage of clean drinking water for people and livestock (Qin et al., 2015). The WRB 130 

provides agricultural irrigation, urban development, river navigation and other functions for more 131 

than 35 million people in 54 counties in Guizhou Province (Xu et al., 2021b). Due to the local 132 

government promoting strict farmland protection policy, the cultivated land in the WRB have 133 

remained stable during the period of the Outline of the 12th Five-Year Plan and the 13th Five-year 134 

Plan for National Economic and Social Development of the People's Republic of China. The total 135 

use of fertilizers has increased significantly in accordance with the increase of grain demand (Li et 136 

al., 2020a; Oliver et al., 2020), together with runoff and infiltration of pollutants leading to a serious 137 

crisis of the river water quality in the WRB (Li et al., 2020a; Xu et al., 2021b). Due to the slow soil 138 

formation of carbonate rocks, large landform slopes, low vegetation cover, water and soil 139 

conservation is at risk from natural disasters and poor approaches to agricultural production have 140 

exacerbated soil erosion and rock desertification (Xu et al., 2021b). Because the original surface 141 

vegetation was mostly destroyed, the vegetation of the region is mainly a secondary forest, 142 

consisting of subtropical evergreen and deciduous broad-leafed mixed trees, mainly composed of 143 

species of genera Cyclobalanopsis, Pinus, Betula, and Cupressus(Sheng et al., 2018).The bedrock 144 

of the WRB is mainly composed of carbonate rocks, dolomite, and limestone micaceous(Han and 145 

Liu, 2004), and the main soil types are yellow loam, paddy soil, and calcareous soil. The 146 

hydrogeological conditions are complex due to the unique geology of the region, which has 147 

contributed to mature underground rivers. The region is covered by shallow soil (<1 m), mainly 148 
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composed of lime developed from dolomite (>50%), some of which is mineralized and some of 149 

which is presented in loose form (Nie et al., 2017). The soil types in the WRB are more permeable 150 

soils type A and B and may result in higher water tables and accelerated nutrient flow to the soil 151 

(Rodriguez-Galiano et al., 2014). Their texture is silty loam, sandy soils have higher porosity and 152 

therefore lower water retention, resulting in lower absorption of pollutants such as pesticides, metal 153 

ions and solutes. In addition to the aerated structure and inadequate bonding of humus to sand grains, 154 

these properties preferentially allow the infiltration of water and associated contaminants (Andry et 155 

al., 2009; Zalidis et al., 2002).   156 

 157 
Fig.1. The monitoring river networks and overview of WRB 158 

2.2 Data resources and pre-processing 159 

2.2.1 Water quality data resources 160 

     We applied a complete time series water dataset from 207 surface water quality monitoring 161 

sections sampled by the Bureau of Water Resources Department and Environmental Protection 162 

Department in Guizhou province respectively. A monthly sampling frequency is used for national-163 

controlled and provincial-controlled water quality sections are once per month, while that of water 164 

functional areas is once per quarter. The time scales were across from 2014 to 2019. All the 165 

indicators were collected by mixed samples and tested in laboratory. The Sample pretreatment and 166 



pollutant concentration determination methods are mainly based on "Environmental Quality 167 

Standard for Surface Water" (GB3838-2002), and specific detection methods are presented in the 168 

supplementary material ST3. Therefore, the complete time series pollution indexes in the WRB 169 

were selected including Ammonia nitrogen (NH4+-N), Total phosphorus (TP), Five-day biochemical 170 

oxygen demand (BOD5), Dissolved oxygen (DO), Anionic surfactant (AS), Temperature (T), 171 

Hydrogen ion concentration index (pH), Electrical conductivity (EC), total nitrogen (TN), sulfide 172 

(SO42-), Potassium permanganate index (CODMn). These 11 indexes were used as water environment 173 

dataset in our study. We set the measured value below the detection limit as the detection limit 174 

(Farnham et al., 2002). 175 

2.2.2 Meteorological and landscape data sources and data pre-processing 176 

We developed an integrated database including 46 watershed landscape characteristics 177 

contributing to the spatial variability of river pollution according to three key driving processes 178 

(sources, mobilization and delivery) put forward by multiple studies (Granger et al., 2010; 179 

Hrachowitz et al., 2016; Lintern et al., 2018). More details are shown in supplementary material 180 

Table.S1. Then we used the hydrological tool "Burn-in" method in ArcGIS 10.2 software with a 181 

watershed pixel threshold of 15,000 to delineate 792 reaches and sub-basins of the WRB, and their 182 

distribution was adjusted to be more correct according to satellite images of the basin. The 183 

topographic wetness index (TWI) was calculated by using the 8-flow method proposed by Quinn 184 

(Gruber and Peckham, 2009; Quinn et al., 1991). The grid soil permeability data was computed by 185 

the Python-ROSSETA model according to soil texture (Zhang et al., 2018). The average annual 186 

streamflow of the reaches is modeled based on the water balance Budyko model (Zhang et al., 2004) 187 

through annual predication and potential evapotranspiration, and all the parameters are participated 188 

in calculation referred to (Dai et al., 2021). The landscape index is calculated from Fragstats 4.3. 189 

The distance between landslide geological disaster points and water body is analyzed by nearest 190 

neighbor analysis ArcGIS 10.2. Industrial Point sources emission data came from fifteen thousands 191 

sewage draining outlets of Guizhou Provincial Environmental Protection Bureau. Nighttime light 192 

data was provided by (Li et al., 2020b). A detailed description of the data sources and processing 193 

steps are provided in supplementary materials, see Fig.S1-27 and Table.ST2.   194 

2.3. Modeling and database processing 195 

First, we assessed water quality conditions and identified key variables deteriorating water 196 



quality calculating by the Water Quality Index (WQI-DET) proposed by (Huang et al., 2019). 197 

Second, we used Zonal statistics in ArcGIS 10.2 to extract the watershed characteristic data to pair 198 

with geographical location of the water quality sampled sites. The integrated subbasin units (SUs) 199 

database matrix containing water quality data (as model inputs) and corresponding watershed 200 

characteristic data (as model output) prior to developing the prediction model are shown in Fig S1, 201 

Table S1 and S2. We first detrended the water quality for use in modeling (Schwarz et al., 2006). A 202 

large uncertainty would exist in time-averaged water quality on account of the temporal variability 203 

within water quality datasets. Prior to performing ML models, we used the car package in R 4.03 to 204 

perform the Box-Cox transformation for the site-level average mean concentrations of each water 205 

quality index (Fox et al., 2012; Guo et al., 2019). The Box-Cox parameter λ was estimated 206 

individually and presented in supplementary material Table S3 and all the transformed water quality 207 

variables were normally distributed based on the Shapiro-Wilk's test (Box and Cox, 1964; Liu et al., 208 

2021; Wang et al., 2021a). We only selected data from 151 water quality sites for ML modeling on 209 

account of the completeness of the dataset for total nitrogen. In order to improve the precision and 210 

computational efficiency of the ML model, through feature selection, we first removed redundant 211 

and irrelevant features according to Spearman correlation analysis, see section 3.2. Spearman 212 

correlation coefficient between each pair of features were performed and Mantel text was used to 213 

test the relationship between environmental factors and water quality variables(Legendre et al., 214 

2015), see Fig.5. Due to the special geological conditions, debris flow, landslide and other geological 215 

disasters often occur in some parts of the WRB. We added the distance between the landslide 216 

damage points to the center of water body in the ML model. Although this metric is not filtered into 217 

the four models, we still included this index into the inputs of the ML model to verify if it has an 218 

impact to the water quality impairment. All the prediction models in this study were performed on 219 

the Jupiter notebook platform using the open sources libraries in Python3.7 (Scikit-learn, Hyperopt, 220 

XGBoost). The visualization and calculation of SHAP value applied the SHAPforxgboost by Liu 221 

(2019) in R 4.03 https://liuyanguu.github.io/post/2019/07/18/Visualization-of-shap-for-xgboost/. 222 

ArcGIS®10.2 was used for process and analysis of all watershed attributes and visualization of the 223 

results. 224 

https://liuyanguu.github.io/post/2019/07/18/Visualization-of-shap-for-xgboost/


 225 
Fig.2. The schematic framework of overall methods used in this study 226 

2.3.1 Water quality impairments evaluation 227 

Water quality can be expressed in terms of scores calculated through integrating complex data 228 

into a mathematical expression (Nazeer et al., 2014). Water quality index (WQI) (dimensionless 229 

value) based on multiple water quality indicators has been widely used to characterize the 230 

degradation degree of surface and groundwater water quality (Lumb et al., 2011; Sutadian et al., 231 

2016; Wu et al., 2018). We referred to the algorithm of modification water quality index (WQI-DET) 232 

to determine key variables leading to deterioration of water quality put forward by(Huang et al., 233 

2019). The most sensitive indicators of river water quality impairments were evaluated according 234 

to the relative frequency of a variable leading to negative WQI-DET values in the WRB during 235 

2014-2019. Indices of WQL-DET indicate extremely poor water quality (score of-oo) through to 236 

good water quality (score of 100). We can calculate the value of a WQI-DET of a single water 237 

sample by equation (1), from which monthly WQI-DET was calculated by averaging all the values 238 

within a given month. Eeleven (11) water quality variables were used to calculate WQI-DET, i.e., 239 

n = 11, and their concentrations were evaluated against the corresponding surface water quality 240 

classes. 241 

𝑊𝑄𝐼𝐷𝐸𝑇
𝑗 = 𝑚𝑖𝑛(𝑊𝑄𝐼𝐷𝐸𝑇1

𝑗 , . . . , 𝑊𝑄𝐼𝐷𝐸𝑇𝑖

𝑗 , . . . , 𝑊𝑄𝐼𝐷𝐸𝑇𝑛

𝑗 )                          (1)     242 



𝑊𝑄𝐼𝐷𝐸𝑇_𝑖
𝑗 = 100 − 𝑚𝑎𝑥 (0,

𝐶𝑖𝑗 − 𝐶𝑖
𝐼

𝐶𝑖
𝑉 − 𝐶𝑖

𝐼 × 100)                                       (2) 243 

( 𝑊𝑄𝐼𝐷𝐸𝑇
𝑗 ) is the WQI-DET value for the variable i of the water sample j; 𝐶𝑖𝑗  is the 244 

concentration of the environmental variable i of the water sample j; 𝐶𝑖
𝑉  and 𝐶𝑖

𝐼 are the 245 

concentration of the variable i at class I and V according to (GB3838-2002), respectively. 246 

2.3.2 Machine learning prediction method  247 

Boosting regression Tree (Boosting) is a machine learning technique commonly used for 248 

regression and classification problems. It generates prediction models in the form of collections of 249 

weak prediction models (usually decision trees) and modelling complex phenomena(Friedman, 250 

2001; Strobl et al., 2009). The XGBoost package is an optimized distributed gradient enhancement 251 

library that reduces the gradient of the loss function (Chen et al., 2015). The component trees using 252 

recursive binary partitioning of predictive variables are chosen to minimize the variance of residuals 253 

and segment of all predictive variables, which  is considered robust to outliers (Chen and Guestrin, 254 

2016). To be self-contained, we just provide a brief description of the XGBoosting model here, and 255 

the detailed equation can be referred to the literature elsewhere(Chen and Guestrin, 2016). Eq (1) 256 

describes the training loss and regularization which consists of the two parts of XGBoost's objective 257 

function: 258 

Obj(θ) = L(θ) + Ω(θ)                  (3) 259 

where L(θ) is the training loss function employing to evaluate the model simulated 260 

performance for training data and Ω(θ) is the regularization term aiming to control the overfitting 261 

of model (Gao et al., 2018). In addition, the complexity of each tree is often computed as the 262 

following Eq. (2): 263 

Ω(f) = γT + 1
2

λ ∑ wj
2                    T

j=1 (4) 264 

In Eq (4) 𝑤𝑗 is represented by the vector of scores on leaves while T represented by leaves 265 

respectively. The Eq.(3) is defined as the objective function of the structure score of XGBoost. 266 

Obj = ∑ [
T

j=1
Gjwj +

1
2

(Hj + λ)wj
2] + Γt                       （5）      267 

The form 𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2   (6) is quadratic and the best 𝑤𝑗 to a given structure q(x). In 268 

each distinct round of cross-validation we tuned the hyperparameters of the XGBoost model. Grid 269 

Search CV was applied to automate the tuning of hyperparameters to determine the optimal value 270 



of the given model to satisfy the model generalizability (Moriasi et al., 2007). 70% of the randomly 271 

selected data sets was used as the training set and 30% as the test set. The prediction model is only 272 

established by using the data from the training sets, and the training sets are randomly divided into 273 

five parts by non-repeated sampling. Four of them were used to train the model each time, and the 274 

remaining ones was used to verify the accuracy of the four trained models. The step was repeated 275 

five times until each subset had a chance to be used as the validation set, and the remaining subset 276 

was used as the training set. The average of the five test results was calculated as an estimate of 277 

model accuracy and as a model performance indicator of the model under the implementation of the 278 

five-fold cross-validation. Finally, we validated with the remaining 30% of the test sets. We 279 

evaluated average model predictions performance based on coefficient of determination (R2), root 280 

mean square error (RMSE), and Nash-Sutcliffe coefficient (NSE) (Nash and Sutcliffe, 1970). 281 

2.3.3. SHAP analysis   282 

Shapley Additive Explanations (SHAP) is a unified approach to create interpretable machine 283 

learning models. It helps to explain the output of any ML model and to visualize and describe the 284 

complex causal relationship between driving forces and the prediction target (Li et al., 2018). SHAP, 285 

an additive explanation model, is inspired by the theoretically optimal Shapley value  of 286 

cooperative game theory, with all the characteristics treated as "contributors" (Lundberg and Lee, 287 

2017; Strumbelj and Kononenko, 2014). Shapely values are determined according to several axioms 288 

to help allocate the contribution fairly for a group N (with N features) . (Lundberg et al., 2020; 289 

Lundberg et al., 2018). A linear function of binary features g is defined based on the following 290 

additive feature attribution method in equation (6): 291 

∅𝑖 = ∑ 𝑆 ⊆ 𝐹{𝑖}|𝑆|!(|𝐹|−|𝑆|−1)!
|𝐹|!

[𝑓𝑆𝑢{𝑖}𝑚,(𝑥𝑆𝑢{𝑖})−𝑓𝑆(𝑥𝑠)]                 (6) 292 

g(z′) = ∅0 + ∑ ∅iZi
1                           (7)

M

i=1
 293 

where z′, equals to 1 when a feature is observed, otherwise it equals to 0, and M is the number 294 

of input features. In this study, we apply TreeExplainer proposed by Lundberg and Lee (2017) to 295 

accurately calculate TreeSHAP values of the tree integration models. Hyperparameters tuning of 296 

the XGBoosting model are performed separately in each round of cross-validation, and the overall 297 

RMSE was calculated based on the out-of-sample prediction after cross-validation. The SHAP 298 

values of a given prediction variable and observation value exist differences in the outputs, i.e. the 299 



predicted water quality indicator, up to whether the model is suitable for using or not using the 300 

prediction variable after performing each observation. The mean absolute SHAP values of all 301 

observed values summarize the importance of global features, and can be interpreted by more local 302 

models through scatter plots of individual predictive variables and their SHAP values (Just et al., 303 

2020).  304 

3. Results 305 

 3.1 Assessment of water quality impairments in WRB      306 

According to the method of section 2.3.1, river water quality in the WRB shows temporal and 307 

spatial variation. Water quality is roughly consistent with the distribution of population density and 308 

the geographical line of terrain (decreasing from southwest to northeast along the elevation), 309 

presenting a complicated characteristic of fractal phenomenon (Xu et al., 2021). To be specific, from 310 

2014 to 2019, 37.2% of monitoring sections in Furong River basin in the northeast of the WRB 311 

showed good water quality. While only 25.7 % and 17.1 % of monitoring sections in the middle and 312 

southwest part of the WRB showed good water quality. Furong River Basin has the best water 313 

quality and the mean value of median of WQI-DET is 62.15. While the Sancha River Basin (SCRB), 314 

Liuchong River Basin (LCRB) and Qingshui River Basin (QRB) had the worst water quality, with 315 

the mean values of median of WQI-DET from 2014 to 2019 being 42.75, 44.15 and 49.81, 316 

respectively. The mean value of the median of WQI-DET values of the Xiangjiang River basin 317 

(XJRB) and the middle reaches of main stream of the WRB (MRMS of WRB) and lower reaches of 318 

main stream of the WRB (LRMM of WRB) were 44.71, 51.65 and 46.65, respectively. The worst 319 

water quality monitored section in the WRB was found mainly in the SCRB and LCRB, among 320 

which 74.1% (23) of 31 sampled sites and 76.4.4% (26) of 34 sampled points are worse than Class 321 

V on the grounds of water quality standards (GB3838-2002). The water quality of 18 sampling sites 322 

(71.76%) in the LCRB was very poor, which was significantly higher than that in central regions 323 

(XJRB and LRWRB) and northeast regions (FRB). The sampled sites with extremely poor water 324 

quality accounted for 46.1%, 36.4% and 18.19%, respectively. During the year of 2014-2019, the 325 

median trend line of WQI-DET (Figure 4) of the FRB, middle reaches and lower reaches of the 326 

WRB illustrated a positive slope (k) (P <0.01). It showed a small improvement of water quality in 327 

general, increasing 0.52, 0.13 and 0.34 of WQI-DET per year. However, the water quality of the 328 

SRB and XRB showed a negative slope, and the overall water quality decreased slightly. The K 329 



value of WQI-DET decreased by -1.71 and -1.14 per year respectively. It is worth noting that the 330 

river reaches in the rural areas around the cities, are being seriously polluted. The WQI-DET of 331 

water quality decreased from upstream to downstream reaches of the WRB. The water quality in the 332 

middle reaches of the WRB was slightly better than that in the lower reaches of WRB, which may 333 

be due to the large discharge and the cumulative effect of pollutants from upstream to downstream. 334 

The absolute number of WQI-DET showed a slight downward trend from 2014 to 2019, but it began 335 

to increase after 2017, mainly due to the increase of water quality sampled sites and samples. In all 336 

sampled sites of the whole WRB, 61.3% (127/207) of water quality conditions were seriously 337 

impaired. We used the relative frequency of negative WQI-DET value caused by each variable to 338 

determine the most sensitive indices of river water quality impairment in the WRB during 2014-339 

2019, and these were CODMn, TN, and TP. In particular, the contribution of CODMn (reflecting 340 

organic pollutants) and TP to water quality impairment increased, especially in the river reaches 341 

around densely populated urban and rural residential areas. 342 

  

  



 
 

 

 

Fig.4. Inter-annual variability of the WQI-DET values for seven sub-basins of WRB during the 343 

2014–2019 period. The cloud and rain map represents the WQI-DET distribution in the seven sub-344 

basins of WRB. X-axis 1-7 represents Furong River Basin (coral pink), Liuchong River Basin 345 

(orange), Qingshui River Basin (straw orange) and the low reaches of main stream of WRB (apple 346 

green), and Xiang River Basin(blue) the middle reaches of main stream of the WRB (olivine). N is 347 

the number of sampling data.  Note：To better visualize Fig.4, WQI-DET<-100 was omitted 348 

3.2 The results of water quality prediction based on XGBoost   349 

        The Pearson correlation coefficients between each pair of watershed features were 350 

calculated initially, and only those with a Spearman correlation larger than 0.5 were kept (Fig.5). 351 

The Mantel test of mutual information (Mantel text) is a nonlinear correlation metric for pairs of 352 

geographic characteristics or environmental factors(Legendre et al., 2015). About 50% of features 353 

with low correlation (for CODMn, TN and TP and p< 0.05) were further discarded. Meanwhile, a 354 

Partial Mantel test can eliminate the interference of autocorrelation between environmental factors. 355 

The larger the correlation coefficient of Mantel test, the smaller the P value is. It indicates the greater 356 

the impact of geographical landscape factors on a water quality index(Zeller et al., 2016).   357 



 358 

Fig.5. Pearson correlation between environmental factors is shown in the lower right corner, 359 

and Mantel correlation between watershed geographical factors and water environmental factors is 360 

shown in the upper right corner 361 

We used XGBoost to model the relationship between 23 watershed landscape variables and 362 

three water quality indices (Fig.5). Four other popular machine learning techniques were 363 

implemented prior to this work, with adoption of XGBoost, the best predictor, to improve the 364 

performance of machine learning-based water quality predictions. Results are reported in 365 

supplementary material Table S4. According to the Nash-Sutcliffe efficiency coefficient (ranging 366 

from 0.15 to 0.77), the models for CODMn, and TN were significantly improved after feature 367 

selection, whereas the performance of the TP model was slightly better before feature selection (see 368 

supplementary material Table.S5 for more details). Among the three models, the training datasets 369 

of TP and CODMn were well fitted in the cross-validation, indicating that these two models have the 370 

highest accuracy. R2 of CV were 0.68 and 0.57, RMSE were up to 0.79 and 0.94. These two models 371 

were applied to the TP and CODMn test datasets, with R2 of CV of 0.71 and 0.65, and RMSE of 0.79 372 

and 0.94, respectively. 373 

However, the results of training the model for TN data fell short of expectations, the R2 of CV 374 

training datasets of TN are 0.37, RMSE were 1.48. The R2 of the test datasets of TN were 0.39, and 375 

RMSE was 1.37. Through hyperparameter optimization, the TP model was slightly improved while 376 



the CODMn and TN were greatly improved. The R2 of CODMn training dataset and test dataset were 377 

increased to 0.67 and 0.73, RMSE was reduced to 0.79 mg/L and 0.65mg/L. R2 of TP model training 378 

datasets and training datasets were 0.79 and 0.81, RMSE of which were 0.54 mg/L and 0.66 mg/L.  379 

Nash-Sutcliffe efficiency coefficients of those three models were improved after feature selection 380 

and parameter optimization ranging from 0.54 to 0.77, more details are provided in Table 1 and 381 

supplementary material (Table. S5 and Fig.S3).  382 

Table 1. Performance of XGBoost models before and after hyperparameter optimization 383 

       Water quality index                     R2                         

RMSE                    NSE 

           Train Test Train Test Train Test 

Default 

Parameters 

CODMn 0.57 0.65 1.96 0. 94 0.37 0.45 

TN 0.37 0.39 1.48 1.37 0.41 0.23 

TP 0.68 0.71 0.93 0.79 0.46 0.51 

CODMn 0.67 0.73 0.79 0.65 0.64 0.77 

 

Optimized 

Parameters 

TN 0.57 0.61 0.81 0.78 0.54 0.61 

TP 0.79 0.81 0.54 0.66 0.77 0.74 

Note: WQI = water quality index, R2 = coefficient of determination, NSE =Nash-Sutcliffe efficiency coefficient, 384 

RMSE= root mean square error 385 

The concentrations of CODMn, TN and TP of 792 SUBs were predicted by the XGBoost model. 386 

The predictions show that CODMn concentration ranges from 0.2 to 17.31 mg/L, with an average 387 

concentration of 15.84 mg/L, See Fig. 6 (a) to (c). The reaches with higher CODMn concentration 388 

were distributed in densely populated urban reaches of QSRB, XJRB and the MRMS. The TN and 389 

TP concentrations in the WRB ranged from 0.25 to 5.72 mg/L and 0.02 to 1.31 mg/L, with a mean 390 

concentration of 3.83 mg/L and 0.56 mg/L respectively. The central and southeast portions of WRB 391 

are the most contaminated, with significant amounts of TN and TP, which is consistent with the 392 

spatial distribution of agricultural non-point source losses documented in this watershed (Dai et al., 393 

2021; Xu et al., 2021a).   394 



  

 

 

Fig.6. The XGBOOST models projected the following four water quality parameters: (a)CODMn, 395 

(b)TN, and (c)TP 396 

3.3 Analysis of determinants of water quality 397 

 We used a 5-fold cross-validation split to evaluate the average absolute SHAP value as a 398 

measure of global feature importance. By performing each round of cross-validation, a recursive 399 

stepwise procedure was employed to order and remove features by increasing importance. Variable 400 

selection was run in three water quality databases using feature importance from SHAP values. Eight 401 

key features leading to water quality deterioration were selected to draw SHAP force plots according 402 

to six clusters of sub-groups for CODMn, TN and TP models, see our supplementary material 403 

(Fig.S4). The SHAP values of CODMn ranged from 0.189 to 1.014, The SHAP values of TN and TP 404 

ranged from 0.006 to 0.054 and 0.011 to 0.041. We then pooled the features from the previous 405 

ranking and sorted the importance of the features from lowest to highest according to the average 406 



absolute SHAP value of all the features in the model. Repeating this step, least important features 407 

in each step were discarded. After plotting the overall RMSE predicted by cross-validation based 408 

on the chosen features, we finally selected the model with the lowest RMSE for each of the three 409 

water qualities. The SHAP Force plot (Fig.7) essentially superimposed these SHAP values for each 410 

observation and shows how the final output is obtained as a sum of the attributes of each predictive 411 

variable. The X-axis is set to -1 to 1 to facilitate the comparison of the three models. The Y-axis 412 

shows the order of the average absolute value of all observations (Fig.7). The eigenvalue is of 413 

absolute SHAP value is higher, the influence of the eigenvalue on the model output is greater. We 414 

used a bee swarm plot to illustrate and rank the watershed factors driving water quality in the average 415 

absolute SHAP value. CODMn was driven by anthropogenic factors, and the average absolute SHAP 416 

values were: (1.014) of nitrogen fertilizer consumption and (0.524) of night light intensity, and 417 

(0.395) of point source nitrogen emission. The land use types such as the paddy land, dry land, grass 418 

land and rural residential areas are sorted by CODMn, TP, and the mean absolute SHAP value ranged 419 

from 0.036 to 0.307. Descriptive scatter plots representing watershed characteristics and their SHAP 420 

scores are provided in supplementary material (Fig.S5), approximating their contribution (local 421 

feature importance) to the prediction of the Y-axis (three water quality characteristics). As important 422 

meteorological and hydrological factors, rainfall, evaporation and runoff drive the variation of TP, 423 

CODMn and TN, the average absolute of SHAP values were within the range of 0.028 to 0.427. 424 

River morphology factors such as river length, drainage density and water area play a pivotal role 425 

in influencing river water quality. Lithologic features (e.g., carbonate rocks) and soil property (soil 426 

erosion, Terrain wetness index (TWI), soil permeability and soil electrical conductivity, soil organic 427 

carbon) are also important determinants that can influence the deterioration of river water quality, 428 

the range of the mean absolute SHAP values were from 0.028 to 0.323 (Fig.8). The descriptive 429 

scatter plots representing watershed characteristics and their SHAP scores are provided in 430 

supplementary material (Fig.S4), approximating their contributions (local feature importance) to the 431 

prediction of the Y-axis (three water quality characteristics). 432 



 
 

 

 

   Fig.7. SHAP force plots show how the final output is the sum of the attributes of each predictive 433 

variable   434 

  

    



 

Fig.8. The Bees warm plots show SHAP values for watershed characteristics of observation 435 

using each water quality indicator. The Y-axis represents the rank of the average absolute SHAP 436 

values of the observed values (CODMn, TN, TP) of all watershed features 437 

4 Discussion  438 

4.1 The performance of the model to predict pollutant concentration in river water quality of WRB 439 

The XGBOOST model developed in our study constructed a nonlinear mapping relationship 440 

between the multi-source data and the concentrations of CODMn,TN and TP. This provided accurate 441 

prediction of the concentrations in unmonitored reaches of the river network. The predicted 442 

concentration of pollutants in the study area is consistent with the measured results, the average R2 443 

were higher than 0.78. It is worth noting that the input variables used to construct the model in this 444 

study were available to obtain. However, the model, constructed based on these input variables, can 445 

successfully predict river pollution. This provides a solution to time constraints imposed by sample 446 

collection, transportation and detection of traditional river water pollution concentrations via 447 

analysis methods, but also solves the problem that traditional monitoring methods cannot conduct 448 

rapid on-site analysis (Shuhong et al., 2019). More importantly, the predictions (Fig.S4-S7) show 449 

that the model constructed in this study can predict the concentration of pollutants in rivers better 450 

than the other 4 ML methods. Of course, the watershed characteristics used in the model will greatly 451 

affect the model performance of different water quality parameters, especially when the water 452 

quality parameters have different sources and migration/transformation processes (Alvarez-Cabria 453 

et al., 2016b). The watershed characteristics adopted by our model can explain the variability of TP 454 

and CODMn concentrations, but are inferior when predicting TN concentrations. Due the leakage of 455 

carbonate, groundwater systems can act as a net sink for dissolved Nitrogen by increasing the 456 

residence time and reducing the loads of TN through biochemical processes (Zhang et al., 2020B), 457 

thereby reducing the loads from surface water. Meanwhile, TN leaking from carbonate aquifers can 458 



be stored and converted to other nitrogen forms (e.g., by nitrification and/or N2 to NO3-N by 459 

anaerobic ammonia treatment) (Dai et al., 2021; Zhang et al., 2020), However, weak statistical 460 

significance does not necessarily mean that those variables represented by watershed landscape 461 

characteristics are inherently unimportant in determining the sources, dynamics and transport of 462 

pollutants. Secondly, the accuracy of the model is not only affected by the predictors, but also 463 

impacted by the environmental behavior of the predicted targets. The determination of parameters 464 

is based not only on the statistical significance of the coefficients, but also on the overall model 465 

fitting and the physical importance of the parameters (Wang et al., 2021b). At the same time, the 466 

ML model will have better simulation performance when the sample size increases. Or it might be 467 

possible that as we do not consider the effects of seasonal variations on water quality resulting in 468 

the characteristics considered, our study could not fully explain the water quality impairments. 469 

Moreover, the diversification and spatial differences of various water quality parameters are 470 

determinants of different ecological, socio-economic and policy influences in the basin that can 471 

contribute to uncertainties in the model accuracy. 472 

4.2 How does natural characteristics and anthropologic factors generate covariances on water 473 

quality in the WRB? 474 

In our study, to obtain a more unbiased model, influential watershed characteristics and 475 

variables are considered as much as possible which include variables that are not readily available 476 

e.g. industrial point source pollution, fertilizer application data, sewage treatment plants, etc. River 477 

water quality is covaried with many geographical factors such as topography, land cover, 478 

biogeochemical reactivity, climate etc. In section 3.3, we apply SHAP values to decipher how these 479 

factors shape the water quality of rivers. Temperature has been identified as a key factor that directly 480 

influences riverine thermal regimes and biogeochemical processes, such as nitrification, 481 

denitrification, ammonification, and sediment diagenesis rates (Lintern et al., 2018; Sardans et al., 482 

2008; van Vliet et al., 2013). High temperature conditions will increase the growth and degradation 483 

of algae and the capacity of sediments to adsorb phosphorus, which leads to higher CODMn 484 

concentration and higher concentrations of total phosphorus in water (Xia et al., 2015). Rainfall can 485 

profoundly modulate the flow-concentration relationship (Green et al., 2007), especially during a 486 

few short but intense precipitation events, where particulate matter and bioavailable phosphorus 487 



loads may differ by an order of magnitude between wet and dry conditions (Long et al., 2014). 488 

Environmental land use conflict caused by land use deviating from land capacity (natural use) is the 489 

root cause of accelerated deterioration of water quality, and it may lead to continuous changes in 490 

precipitation-runoff-infiltration processes, which in turn lead to extensive soil erosion and nutrient 491 

loss (Blevins et al., 1998; Pacheco et al., 2018; Suescun et al., 2017; Thomas et al., 2016; Valle 492 

Junior et al., 2014). In karst areas, as agriculture encroaches on natural lands, rapid land cover 493 

change often leads to long-term damage to soil and water conservation and other important 494 

ecosystem services (Li et al., 2021) Low natural vegetation covers owing to improper land use 495 

practices (cropping on sloping land), livestock grazing, and environmental hazards (rocky 496 

desertification) may reduce contaminant attenuation in karst area (Jiang et al., 2014). 497 

In highly permeable carbonate karst aquifers, where there are widespread formations of fissures, 498 

fractures, and conduits, fast (e.g. conduit) and slow (e.g. fracture and matrix) flow transfer pathways 499 

will operate (Clifford and Williams, 2007). This leads to the rapid infiltration of rainwater that 500 

carries pollutants (e.g., from livestock, domestic and industrial discharge effluents) and 501 

contaminates groundwater (Wang et al., 2020; Yue et al., 2019). Geology and soil type determine 502 

the sources of sediment and natural nutrients in the catchment (Bostanmaneshrad et al., 2018; 503 

Grayson et al., 1997; Juracek and Ziegler, 2009). The erodixbility of soil and rock and the adsorption 504 

capacity of soil affect the flow of water components in a watershed. The mobilization of sediments 505 

is closely correlated to the susceptibility of the geological deposit and the soil within the catchment 506 

to erosion and weathering (Meybeck et al., 1990; Perry and Vanderklein, 2009). Lithology 507 

determines the alkalinity (pH) and conductivity of water and the concentration of different ions 508 

associated with many biogeochemical processes (Doherty et al., 2014). Soil adsorption capacity also 509 

affects nutrient mobilization in catchments. The transport of dissolved phosphorus, nitrogen and 510 

salts from catchments to recipient waters via underground flow pathways is strongly influenced by 511 

the hydrological characteristics of the soil. When the soil saturated conductivity of aquifers in 512 

watershed areas is low, the residence time of dissolved components in groundwater flow in the 513 

catchment area is increased (Lintern et al., 2018). This provides more opportunity for components 514 

to be lost from flow paths through nutrient absorption or biogeochemical processes such as 515 

denitrification (Hasani Sangani et al., 2015). The soil permeability (soil hydraulic properties) can 516 

affect soil quality and moisture, thereby altering the input of nutrients or organic matter to 517 



groundwater and river systems (Rodriguez-Blanco et al., 2015). TWI reflects topographic control 518 

of groundwater surface and soil moisture, while high TWI values indicate shallow groundwater 519 

table and high soil moisture (Rodhe and Seibert, 1999). Soil organic nitrogen is the main source of 520 

nitrates in rivers, soil moisture can promote the production of NO3-N from the nitrification of soil 521 

organic nitrogen. This can explain that TWI entered TN model (Li et al., 2019). Soil pH plays an 522 

important role in determining the morphology of phosphate in soils because phosphate can bind to 523 

different iron when pH changes. Phosphates tend to form insoluble compounds in the presence of 524 

high concentrations of exchanged calcium. A reduction in soluble phosphorus usually occurs at 525 

higher pH (Sierra et al., 2017). As a result, high soil pH reduces water transport of phosphorus from 526 

land to rivers. 527 

    Anthropogenic activities has altered the river morphological conditions (e.g., changes in 528 

hydrological connectivity due to dam construction) and can severely impair river water quality 529 

(Maavara et al., 2020; Rodriguez-Blanco et al., 2015). In our study, (river length, drainage density, 530 

water areas) are all important covariables affecting water quality in TN, TP models. In general, 531 

higher drainage density may increase the likelihood that terrestrial pollutants carried by surface 532 

runoff will enter the water body (Alexander et al., 2002; Prasad et al., 2005). The river length 533 

determines that the transportation time of pollutants in the stream follows first-order reaction 534 

kinetics related to hydraulic residence time (Smith et al., 1997). Reservoirs play an important 535 

ecological function by hydrologically connecting upland and downstream river networks and 536 

influencing the biological cycle of nutrients. They have strong nutrient removal/interception 537 

capabilities which can be sinks of incoming nutrients or, if water quality is poor, they become 538 

sources of pollutants in downstream river reaches. Due to the need to improve engineering water 539 

shortage and flood control, the local government, most rivers in WRB are impounded (Dai et 540 

al.,2020). According to the Bureau of Hydrology and Resources of Guizhou Province, besides a 541 

dam cascade, there are 19,652 small reservoirs in the entire WRB (Dai, 2019). Dam cascade and 542 

small reservoirs have altered the hydrological regime, river morphology and lateral connectivity and 543 

increased longitudinal fragmentation of the basin (Viaroli et al., 2018), which has further amplified 544 

the instability of the biogeochemical processes and extended the range of resulting environment 545 

damage. These structural modifications have also increased regional hydraulic retention times and 546 

slowed the flow rate of rivers, in turn hindering river metabolism, amplifying nutrient transport and 547 



delivery, but also triggering eutrophication in rivers themselves (Dodds, 2006; Nizzoli et al., 2018).  548 

     GDP, industrial point emission, rural residential area and night light index were considered as 549 

key factors result in CODMn deterioration of water quality, which may also compensate for the index 550 

of population and urban development were filtered by XGBOOST. In the past decade, the WRB has 551 

made great efforts to promote the construction of municipal sewage treatment and sewage discharge 552 

standards has been strictly enforced under the background of China promoting huge investments to 553 

total environmental restoration (Xu et al.,2021). However, there is still a considerable gap in the 554 

design principle and operation performance due to treatment facilities and the sewer system lagging 555 

behind. Effluent discharge standards and sludge disposal are severely inconsistent with local 556 

conditions and environmental requirements (Lu et al., 2019; Qu et al., 2019). It might be the reason 557 

that CODMn concentrations in many urban reaches of WRB were higher than the acceptable limits. 558 

Moreover, rural residential area was an important determinant of water quality (CODMn and TP). 559 

Due to pursuing economic development of rural areas and agricultural intensification, the demand 560 

and consumption of water has been increasing and in turn runoff from fields and farms has increased 561 

in accord with the increases of discharge of domestic sewage, animal waste, leachate from manure 562 

storage facilities or green feed (Skinner et al., 1997). Moreover, the buildings in rural areas are 563 

spatially scattered, and the high construction costs are very unfavorable for the construction of 564 

public water supply and sewage treatment systems (Kupiec et al., 2021). In addition, karst rural 565 

areas not only lack the knowledge of proper manure management, but also lack proper manure 566 

storage facilities or poor technical standards (Gao et al., 2014; Norse and Ju, 2015; Oliver et al., 567 

2020). 568 

4.3 Management implications and future challenges 569 

However, deterioration of water quality can be caused by many factors, such as complex 570 

geographical environment and intensive human intervention (including mining, intensive 571 

agriculture activity), inadequate sewage treatment measures (Xu et al.,2021) and poor groundwater 572 

environment (Li et al., 2020a; Zeng et al., 2020).In addition, damming and the construction of 573 

multiple small reservoirs have drastically reduced surface runoff, limiting the river's ability to dilute 574 

effluent from sewage treatment plants, see section 4.2. As mentioned above, our findings support 575 

the development of strategies by identifying key characteristics of pollutant sources and 576 

incorporating them into regional planning (e.g. changing land use, improving industrial structure 577 



and distribution). In addition, since the Chinese government has been promoting ecological 578 

rehabilitation projects to restore rocky desertification and improve local poverty, the river water 579 

quality has been neglected in the WRB. We also suggest that soil, water processes and environmental 580 

effects should be incorporated into a unified scientific management framework to best communicate 581 

the trade-offs between policy options and promotion of pollution control and ecological restoration. 582 

This will help realize ecological value and promote green development management of the WRB 583 

(Xu et al., 2021a). Our approach can not only effectively promote pollutant sources control, but also 584 

decelerate the pollutant migration and transformation process. It is imperative to adjust local 585 

economic structure and develop low-pollution water-saving industry. Water-saving irrigation 586 

schemes also appear to be a necessary measure to reduce pollutant infiltration into the soil.  587 

And some micro-policy proposals were advocated; promoting BMPs is a good choice in this 588 

case, it will allow policy makers to mitigate non-point source pollutants and further restore river 589 

ecosystems in the agricultural areas of WRB. BMPs include improving the efficiency of fertilization, 590 

improving manure management and buffering the pollutant delivery processes between land and 591 

water (e.g. restrict  livestock farming near rivers, plant more vegetation near river banks). 592 

Promoting soil remediation is also important for restoration of the water environment of WRB and 593 

requires management of vulnerable geological areas with well-drained soils, high recharge and low 594 

soil organic carbon characteristics. It is necessary to implement integrated management of surface 595 

water and groundwater to alleviate the contradiction between intensive water use and geographical 596 

environment constraints.  597 

Although results have been achieved using ML methods to detect and evaluate water quality, 598 

we still need to consider the potential disconnects between macro-scale simulations and local social, 599 

economic, and environmental realities, as well as catchment-scale constraints for on-site water 600 

quality management. But we also need to conduct field assessments to assess the extent to which 601 

reductions in pollutants concentrations are actually achieved, based on best management practices 602 

for site-specific nutrient sources combining the landscape characteristics (Jarvie et al., 603 

2018; Sharpley et al., 2016). In the short term, it may be unrealistic to expect pollutant 604 

concentrations to be reduced to the complianced and restricted target concentrations, especially in 605 

highly impaired karst basins with multiple complex pollutant sources and long-term legacy nutrient 606 

contributions (Jarvie et al., 2018; Sharpley et al., 2013; Xu et al., 2021a). However,  our simulation 607 



to assess the nutrient limitations combined with assessment of compliance and limitation gaps, 608 

provides a basis for developing targeted approaches to nutrient water quality compliance in future 609 

work. 610 

5 Conclusion 611 

 Understanding of the multiple forces determining river water quality and the complexity and 612 

interaction of these forces is necessary to develop successful water quality management strategies.  613 

Those knowledges can be used to develop predictive models that will help to predict river water 614 

quality. In this study, we evaluated those important factors affecting the spatio-temporal variation 615 

of water quality (CODMn,TN,TP) in an ecologically fragile watershed with high landscape 616 

heterogeneity by adopting a data-driven machine learning approach. Machine learning can take 617 

advantage of all the crossover effects between variables to improve the accuracy of model 618 

predictions, which is an advantage over traditional statistical models. the Nash efficiency coefficient 619 

are ranging from 0.54 to 0.8, which indicates that our prediction is reliable and robust. Through the 620 

analysis of powerful model interpreter (SHAP), though anthropogenic factors such as land use are 621 

closely related to river pollutant concentrations, the effects of key hydroclimatic, soil types and 622 

vegetation conditions vary across different components and regions. XGBOOT can be used to 623 

identify potential water quality hot spots in unmonitored locations; this suggests that catchments 624 

with steep gradients, fragile soils or areas with widespread carbonate rocks should be sampled more 625 

frequently. Our study underlines the needs to highlight soil and water processes and integrate 626 

environmental effects into a unified scientific management framework when implementing 627 

ecological engineering restoration in karst areas. Therefore, as more land management surveys are 628 

been promoting and ongoing water quality monitoring data are available, an extended temporal or 629 

spatio-temporal modeling framework may be used to assess the success of recovery measures in the 630 

future.  In the meanwhile, we should consider combining the assessment of simulated nutrient 631 

limits with the assessment of compliance and limitation gaps to provide a basis for developing a 632 

targeted approach to river water quality compliance that focuses on closing the gap between current 633 

and target concentrations.   634 
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