Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32649
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarti, Stefanoen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.editorCastillo, Pedro Aen_UK
dc.contributor.editorJiménez Laredo, Juan Luisen_UK
dc.date.accessioned2021-05-29T00:01:49Z-
dc.date.available2021-05-29T00:01:49Z-
dc.date.issued2021-04-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32649-
dc.description.abstractNeuroEvolution of Augmenting Topologies (NEAT) is a system for evolving neural network topologies along with weights that has proven highly effective and adaptable for solving challenging reinforcement learning tasks. This paper analyses NEAT through the lens of Search Trajectory Networks (STNs), a recently proposed visual approach to study the dynamics of evolutionary algorithms. Our goal is to improve the understanding of neuroevolution systems. We present a visual and statistical analysis contrasting the behaviour of NEAT, with and without using the crossover operator, when solving the two benchmark problems outlined in the original NEAT article: XOR and double-pole balancing. Contrary to what is reported in the original NEAT article, our experiments without crossover perform significantly better in both domains.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationSarti S & Ochoa G (2021) A NEAT Visualisation of Neuroevolution Trajectories. In: Castillo PA & Jiménez Laredo JL (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, 12694. 24th International Conference, EvoApplications 2021, Seville, Spain, 07.04.2021-09.04.2021. Cham, Switzerland: Springer, pp. 714-728. https://doi.org/10.1007/978-3-030-72699-7_45en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 12694en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Castillo PA & Jiménez Laredo JL (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, 12694. 24th International Conference, EvoApplications 2021, Seville, Spain, 07.04.2021-09.04.2021. Cham, Switzerland: Springer, pp. 714-728. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-72699-7_45en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectNeuroevoltuionen_UK
dc.subjectNEATen_UK
dc.subjectSearch Trajectory Networksen_UK
dc.titleA NEAT Visualisation of Neuroevolution Trajectoriesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-72699-7_45en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage714en_UK
dc.citation.epage728en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleApplications of Evolutionary Computationen_UK
dc.citation.conferencedates2021-04-07 - 2021-04-09en_UK
dc.citation.conferencelocationSeville, Spainen_UK
dc.citation.conferencename24th International Conference, EvoApplications 2021en_UK
dc.citation.date01/04/2021en_UK
dc.citation.isbn978-3-030-72698-0en_UK
dc.citation.isbn978-3-030-72699-7en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85107486907en_UK
dc.identifier.wtid1721565en_UK
dc.contributor.orcid0000-0002-1780-2259en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2021-01-20en_UK
dcterms.dateAccepted2021-01-20en_UK
dc.date.filedepositdate2021-05-28en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorSarti, Stefano|0000-0002-1780-2259en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorCastillo, Pedro A|en_UK
local.rioxx.contributorJiménez Laredo, Juan Luis|en_UK
local.rioxx.freetoreaddate2021-05-28en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2021-05-28|en_UK
local.rioxx.filenameSarti.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-72699-7en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Sarti.pdfFulltext - Accepted Version684.99 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.