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Abstract. NeuroEvolution of Augmenting Topologies (NEAT) is a sys-
tem for evolving neural network topologies along with weights that has
proven highly effective and adaptable for solving challenging reinforce-
ment learning tasks. This paper analyses NEAT through the lens of
Search Trajectory Networks (STNs), a recently proposed visual approach
to study the dynamics of evolutionary algorithms. Our goal is to improve
the understanding of neuroevolution systems. We present a visual and
statistical analysis contrasting the behaviour of NEAT, with and without
using the crossover operator, when solving the two benchmark problems
outlined in the original NEAT article: XOR and double-pole balancing.
Contrary to what is reported in the original NEAT article, our experi-
ments without crossover perform significantly better in both domains.
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1 Introduction

NeuroEvolution of Augmenting Topologies (NEAT) is an algorithmic system
that belongs to the category of topology and weight evolving artificial neural
networks. NEAT strengthens the analogy between genetic algorithms and natu-
ral evolution by both optimising and complexifying the solutions simultaneously.
Starting from a population of simple neural networks (without hidden units),
NEAT incrementally grows them to produce more complex structures, while
preserving the simplest amongst the complexified configurations. Other features
of NEAT include speciation to protect innovation, genome’s historical mark-
ings to facilitate recombination, and fitness sharing to ensure diversity. NEAT
outperformed the best fixed-topology neuroevolution methods on a challenging
pole balancing task [12]. Thereafter, NEAT has proven to be an effective and
adaptable system with several applications such as dynamically evolving agents
and content for video games [4, 13], generating complex musical compositions
[5], evolving reaction networks in synthetic biochemical systems [3], prediction
in geosciences [14] and generating trading signals for financial markets [7].

Besides standard comparative performance studies, there is a lack of tools to
analyse and explain the dynamic behaviour of neuroevolution systems and their
variants. This article contributes to fill this gap by bringing a recent visualisation
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and analysis tool, Search Trajectory Networks (STNs), to the realm of neuro-
volution. The concept of STNs was proposed in a recent conference paper [9],
where the authors modelled the dynamics of two population-based algorithms
when solving synthetic continuous benchmark functions. STNs are a data-driven,
graph-based model of search trajectories where nodes represent a given state of
the search process and edges represent search progression between consecutive
states. Once a system is modelled as a graph (network) it can be visualised
and analysed with the plethora of powerful analytical and visualisation tools
provided by the science of complex networks [8].

The main contributions of this article are to:

– Adapt STNs to model incremental and variable length genotypes such as
those in NEAT

– Offer, for the first time, a network-based visual analysis of neuroevolution
trajectories

– Revisit the issue of the role of crossover in neuroevolution systems

The rest of the article is organised as follows. Section 2 describes the STN
model and how to adapt it to deal with NEAT trajectories. Section 3 describes
the experimental setup, including the benchmark functions, algorithm variants
and parameter values. Our results are presented and discussed in Section 4, while
Section 5 summarises our main findings and suggestions for future work.

2 Search Trajectory Networks

We start with some relevant definitions and follow with our proposal to store
NEAT genotypes so they can be used as nodes in the graph-based STN model.
Moreover, we describe the sampling process to generate the models.

2.1 Definitions

In order to define a network model, we need to specify the nodes and edges. The
relevant definitions are given below.

Representative solution. A solution to the neuroevolution task at a given
time step that represents the status of the search algorithm. As NEAT is a
population based algorithm, we selected the best solution in the population at
the given iteration as the representative solution.

Location. A subset of solutions that results from a predefined partitioning of
the search space. Each solution in the search space is an element of one and only
one location. Each location is assigned a representative objective value. The
distinction between solutions and locations is required because in continuous
domains, such as neuroevolution, the number of candidate solutions is infinite
in principle. Therefore we require a coarsening or partition of the search space,
which is achieved by controlling the parameters’ (weights, bias) numerical pre-
cision.
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Search trajectory. Given a sequence of representative solutions in the order
in which they are encountered during the search process, a search trajectory is
defined as a sequence of locations formed by replacing each solution with its
corresponding location.

Node. A location in a search trajectory of the search process being modelled.
The set of nodes is denoted by N .

Edges. Edges are directed and connect two consecutive locations in the search
trajectory. Edges are weighted with the number of times a transition between
two given nodes occurred during the process of sampling and constructing the
STN. The set of edges is denoted by E.

Search Trajectory Network (STN) A STN is a directed graph STN =
G(N,E), with node set N , and edge set E as defined above.

2.2 Mapping NEAT Genotypes to Locations

Due to NEAT’s dynamic nature, genotypes which encode both topologies and
connections weights, can grow or shrink through generations. This makes the
representation of NEAT search states hard to consistently map to the location
signatures required for STNs modelling. STNs use said signatures as node iden-
tifiers to construct the aforementioned graph models. Therefore, it is important
to capture and map all necessary information of a location in the NEAT search
space.

To overcome this challenge, we propose using the Python object serialisation
facilities, as provided by the pickle module function dumps. Pickling is the pro-
cess whereby a Python object is converted into a byte stream. Our proposal is
to serialise NEAT genomes and use the resulting byte streams as location signa-
tures. Since the signatures are unique and contain all the genotypic information,
they provide a faithful representation for the STNs nodes.

Figure 1 illustrates the details of the mapping process. NEAT genotypes en-
code both nodes and connections. Each node has an identifying id (key). Each
connection can be either enabled or disabled. Connectionism tells us that for
every node there is a bias and every connection has a weight. We extract this
information from the genotype and separate them; focusing on the flow of in-
formation from nodes acted upon by other nodes. We then use this information
to construct a pseudo-phenotypical vector representation (NN Representation
in Fig. 1). The mapping is completed by passing this vector representation to
the pickle.dumps function which enables us to create a flattened, compressed
representation of the genotype as a byte stream.

Before the data is extracted and mapped, the numerical precision of the
weights and bias values needs to be reduced. The goal is to partition the search
space, and thus reduce the number of possible locations. This allows having
manageable visual representations, as it was done for the continuous bench-
mark functions studied in [9] where a solution precision parameter was used to
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Fig. 1. Mapping NEAT genotypes to location signatures using Python object seriali-
sation (pickle.dumps).

partition the continuous search space into equal-sized discrete portions. In the
experiments reported in this paper, the partition is achieved by rounding off
to 1e − 0 the numeric values in the genotype (weights and biases, as they are
bounded in the range [-30,30], see Table 1), and to 1e− 4 for the fitness values.

2.3 Sampling and STN Model Construction

One strength of the STN model is that it does not require any additional sam-
pling methods. Instead, the models are constructed from data gathered while
running the evolutionary or metaheuristic algorithms under study. In this paper,
the STNs were generated for two NEAT variants (with and without crossover)
on two benchmark problems: XOR and double-pole balancing with velocities
(DPV). For each problem, an STN was constructed by aggregating all the unique
nodes and edges encountered across five independent runs of each NEAT variant.
Section 3 gives details on the benchmark functions and parameter settings used.

We also constructed the merged STN model of the two NEAT variants. The
merged STN model for a given instance is obtained by the graph union of the
two individual graphs for that instance. More formally, let STNA = G(NA, EA)
and STNB = G(NB, EB) be the STNs of algorithm variants A and B for a
given instance. We then construct STNmerged as the union of the two graphs.
Specifically, STNmerged = G(NA ∪ NB, EA ∪ EB). The merged graph contains
the nodes and edges that are present in at least one of the algorithm graphs.
Attributes are kept for the nodes and edges indicating whether they were visited
by both algorithms or by one of them only.
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3 Experimental Setup

3.1 Benchmark Problems

We considered the two classic benchmark tasks outlined in the original NEAT
article [12]; XOR and double pole balancing with velocities (DPV).

XOR. Because XOR is not linearly separable, a neural network requires hidden
units to solve it. This structural requirement makes XOR suitable for testing
NEAT’s ability to evolve structure. The fitness function is measured as the com-
plement of the sum of squared errors (Eq. 1).

F = 4.0−
∑
i

(ei − ai)
2

(1)

Here ei and ai are the expected and actual outputs, respectively. The max-
imum expected output is 4.0, as these are the four possible correct output for
the XOR domain. Any values equating or exceeding a fitness threshold of 3.98
are considered to have solved the problem.

DPV. The pole balancing domain is well known in the reinforcement learning
literature. We considered the double-pole balancing with velocity inputs, where
two poles are connected to a moving cart by a hinge and the neural network must
apply force to keep the poles balanced for as long as possible within the bound-
aries of the track. The Runge-Kutta fourth-order method is used to implement
the system dynamics. The criteria for success on this task is keeping both poles
balanced for 100,000 time steps (approx. 30 minutes of simulated time). Fitness
is measured as the number of time steps that both poles remain balanced (Eq.
2).

F = 1.0− log tmax − log teval
log tmax

(2)

Here tmax denotes the maximum expected number of time-steps (100,000
in our experiments), and teval the actual number of steps during which the
controller was able to maintain a balanced state of the pole within the specified
limits of ±36◦, within the boundaries of ±2.4 meters of the middle of track.

This particular implementation [10] uses logarithmic scales because most
trials fail approximately in the initial 100 steps. Since the solving criteria is
100,000 steps, a logarithmic scale ensures a better distribution of scores. The
second term in Eq. 2 is the loss function, in the range of [0,1]. The fitness
function F is the complement of the loss score. Hence, fitness scores are in the
[0,1] range, with best performing values tending to 1.0. Any values that equate
or exceed 0.98 are considered to have solved the domain (fitness threshold).
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3.2 Algorithms and Parameters

In terms of the search algorithm variants, we obtained inspiration from the abla-
tions study conducted in [12] to identify how each of NEAT’s components help to
deliver its enhanced performance. The ablations isolate key properties of NEAT
to assess whether removing them causes a significant decrease in performance.
Four ablations were studied in [12], non-growth, random initialisation (instead
of minimal initialisation), non-speciation and non-mating.

Here, we consider the non-mating ablation. That is, we measured the perfor-
mance of NEAT with and without using the recombination (crossover) operator.
The experiments use the same parameter values as in the original paper [12],
the principal ones are listed in Table 1.

Table 1. NEAT parameter values used on each domain.

Parameter XOR DPV

Population size 150 1000

Total generations 100 1000

Fitness threshold 3.989 0.989

Bias range [-30, 30] [-30, 30]

Weight range [-30, 30] [-30, 30]

Input nodes 2 6

Output nodes 1 1

The experiments were conducted with the Python implementation of NEAT,
neat-python [6]. For each domain and algorithm variant, 30 runs were conducted
in order to correctly apply statistical tests.

4 Results

We start with a statistical analysis, supported by a non-parametric test (Mann-
Whitney), contrasting the performance of the two NEAT variants (with and
without crossover) when solving the two benchmark problems. This is followed
by a detailed analysis contrasting the search dynamics using the STN model.

4.1 Performance Analysis

For each algorithm variant and benchmark function, 30 runs were executed with
the parameter settings outlined in Table 1. Table 2 summarises the success rate,
average number of evaluations to reach a solution and average quality of solution
reached for both domains. As results indicate, the no crossover NEAT variant
has a slightly higher success rate, and is noticeably more efficient as it reaches a
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solution with lower evaluations on average. Furthermore, the mean best fitness
is calculated on successful runs at the stage when solution is reached. This is
slightly higher for the variant without recombination, proving that this type of
system produces better solutions on average. This overall observation is more
marked for the DPV problem. This is in sharp contrast with the results reported
in the original NEAT article [12], where the non-mating ablation study indicated
that the use of crossover improves NEAT performance.

Table 2. Performance metrics.

XOR DPV

Crossover No Crossover Crossover No Crossover

Evaluations (avg) 8,815.90 7,708.69 241,750.01 73,933.33

Evaluations (std) 2,760.28 2,199.09 227,395.80 74,380.52

Best fitness (avg) 3.9919 3.9924 0.99900 0.99947

Best fitness (std) 0.0060 0.0061 0.0030 0.0028

Success rate 73.3% 76.6% 93.3% 100%

In order to observe the dynamic behaviour of the two NEAT variants, Fig-
ures 2 and 3 show the average performance (best fitness) curves with error-bands
(standard deviation), on the two benchmark problems respectively. The oscillat-
ing behaviour in the average fitness across generations, particularly observable
in Figure 3 is expected, as for our experiments elitism was not considered. This
means that at each generation, the best-performing individual may differ from
the best-performing individual at the previous generation. The algorithm, how-
ever, tracks the best overall solution obtained across the run, which is then
returned at the end of the run.

Given the aforementioned results, we proceed to assess for significance using
the Mann-Whitney test; setting a p-value of 0.05. The system of hypothesis was
formulated as follows.

– H0: NEAT without crossover has similar distributions as the system with
crossover.

– H1: The two NEAT variants have significantly different distributions. Hence
NEAT without crossover performs significantly better.

Table 3 displays the results related to the quality of the solution reached
(effectiveness) both at midpoint (test 1) and endpoint (test 2). Moreover, we
test for the evaluations required to reach solution (efficiency). As results indicate,
H0 is rejected in most cases as tested distributions differ, producing a p-value
lower than 0.05, with the exception of XOR, tested at endpoint which shows no
significance.
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Fig. 2. Average best fitness with standard deviations across generations for the two
NEAT variants on the XOR domain.

Table 3. Significance testing.

XOR DPV

Effectiveness midpoint test p = 0.00178 p = 0.00502

Effectiveness endpoint test p = 0.32071 p = 0.00360

Efficiency test p = 0.03911 p = 0.00007

In Figure 4 and 5 these findings are substantiated by visualising the distri-
bution of the number of evaluations to reach a solution (left plot) and the best
fitness sampled at run midpoint (right plot), on the two domains respectively.

In Figure 4 we observe that in the system without crossover, the distribution
of values for efficiency testing (evaluations required to reach a solution) are
concentrated much lower, than its counterpart.

The second plot on the right, represents the distributions of fitness values
halfway through the runs. Visibly, the system without crossover, exhibits a bi-
modal distribution with some values concentrating between 3.4 and 3.5, similarly
as the variant with recombination. Although, in the system without crossover,
greater density can be observed higher towards the upper whisker (between 3.85
and 4.0).

Comparably, Figure 5 depicts tested values for the DPV domain. In relation
to the plotted efficiency (left plot), we observe that in the no crossover system,
a greater and narrower density of values resides much lower in the evaluations.
The distribution of values in the crossover system is similar to its counterpart,
yet it shows wider variance with greater upper and lower bounds.
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Fig. 3. Average best fitness with standard deviations across generations for the two
NEAT variants on the DPV domain.

Distributions of fitness values tested at midpoint show similar spreads be-
tween the two systems. Bi-modality can be observed in both systems, in similar
ways, although less accentuated in the no crossover system. Higher density can
be witnessed in the crossover system at lower values, between 0.5 and 0.7. For
the system without recombination, a much higher concentration is visible around
higher values, between 0.9 and 1.0. Further confirming the improved performance
of this system.

4.2 STNs Analysis

When networks are of moderate size, visualisation is a powerful tool allowing
us to appreciate structural features which can be difficult to infer studying only
network metrics. Node-edge diagrams, used here, are the most common visual
representation of a network. Node-edge diagrams assign nodes to points in the 2-
dimensional Euclidean space, and connect adjacent nodes by lines. If the graphs
are directed, arrowheads are used to indicate the direction of connections. Nodes
are then drawn on top of the edges using simple geometric shapes (such as circles
or squares). Typically, the most important attributes of nodes and edges are
assigned to visual properties (such as size and colour) of the shapes and lines;
for instance, the area of a circle can be made proportional to the degree of the
node in order to highlight hubs (i.e. highly connected nodes).

The graph visualisations in this paper were produced with the igraph li-
brary [2] of the R programming language. We visualised the merged STN mod-
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Fig. 4. Distribution (across 30 runs) of the number of evaluations to reach a solution
(left plot) and the best genomes fitness values at the middle of the run for the two
NEAT variants on the XOR domain.
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(left plot) and the best genomes fitness values at the middle of the run for the two
NEAT variants on the DPV domain.

els using the Reingold-Tilford [11] layout algorithm, which is specially suited
for drawing trees (graphs without layout cycles). It generates a layout where
vertices are organised into layers based on their geodesic distance (path length)
from a chosen root vertex, which in our case are the start of trajectories. The
algorithm also strives to minimise the number of edge crossings and to make the
layout as narrow as possible.

Figures 6 and 7 illustrate the merged STN models for XOR and DPV, respec-
tively. Nodes and edges are decorated to highlight relevant features of the search
dynamics. Node sizes are proportional to their incoming weighted degree, which
indicates to what extend nodes are revisited and thus attract the search process.
The no crossover NEAT variant is visualised in red while the crossover variant in
blue. Five trajectories were used to generate the STN for each algorithm variant,
which start from the same five random seeds. This can be appreciated by the
five start nodes highlighted in yellow and of larger size. All the visualised trajec-
tories end in a different solution (fitness value above the respective threshold for
each domain), which is visualised with the dark grey enlarged nodes. For both
domains, trajectories from start to solution nodes are clearly shorter on average
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Fig. 6. Merged STN for XOR. The nodes and edges visited by each NEAT variant are
identified with different colours. Light grey nodes indicate locations visited by both
variants. Node sizes are proportional to their incoming degree. The start of trajectories
and the nodes achieving the fitness threshold (solutions) are also highlighted in different
colours and of slightly larger size.

for the no crossover variant. This is more noticeable for the DPV domain (Fig
7) where the blue trajectories (NEAT with crossover), are consistently larger.

The XOR merged STN of Figure 6, shows a larger number of nodes where the
two algorithm variants overlap (visualised in light grey). The five initial nodes
in yellow are shared by both algorithms, after this some grey shared nodes occur
at the early stages of the search process (first steps of the search trajectory).
This is consistent with the incremental grow of the NEAT genotypes, the early
structures are more likely to be similar. The number of shared nodes is smaller
for the more complex DPV domain (Figure 7), which can be explained by the
larger genotypes for this task. Interestingly, we can observe a large shared node
in the DPV domain (grey node around the top middle of the image), which is
visited by the 3rd no crossover (red) trajectory and also traversed by three of the
crossover (blue) trajectories. Recall that the size of nodes is proportional to their
incoming degree. We hypothesise that this shared node is a good but sub-optimal
configuration that tends to attract the search process with crossover.
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Fig. 7. Merged STN for DPV. The nodes and edges visited by each NEAT variant are
identified with different colours. Light grey nodes indicate locations visited by both
variants. Node sizes are proportional to their incoming degree. The start of trajectories
and the nodes achieving the fitness threshold (solutions) are also highlighted in different
colours and of slightly larger size.

Table 4. STN structural metrics.

XOR DPV

Crossover No Crossover Crossover No Crossover

Nodes 173 112 954 320

Edges 186 121 1018 345

Path length (avg) 34.0 20 137.38 44.34

Path length (std) 13.72 8.59 58.56 23.08

Shared nodes 27 12

Shared edges 7 5

In order to support the visual STN analysis, Table 4 reports the following
network metrics for each domain:
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– Nodes: The number of nodes, which corresponds to the number of unique
locations visited by each variant.

– Edges: The number of edges, which corresponds to the number of unique
search transitions between locations.

– Path length: Average path length (with standard deviation) from start to
solution nodes. The length of a path is the number of edges it contains.

– Shared nodes: The number of shared nodes in the STN model, which corre-
sponds to the number of locations visited by both NEAT variants.

– Shared edges: The number of shared edges, which corresponds to the number
of search transitions traversed by both NEAT variants.

The metrics in Table 4, confirm that the no crossover NEAT variant produces
much shorter trajectories and thus more efficient search on both domains. The
larger number of unique nodes visited by the crossover variant on both domains,
indicate that crossover brings increased diversity to the evolutionary process.
However, in the two domains explored, this diversity does not translate into a
more efficient or more effective search. For both domains and algorithm variants,
the number of edges is of similar magnitude to the number of nodes, indicating
little trajectory overlap across runs; that is, only a few nodes are revisited by
different runs. Instead, each trajectory follows mostly a different path, specially
after the few early stages of the search process, and all trajectories end up
in a successful different configuration with fitness value above the threshold.
This observation can be confirmed by looking at the STN plots (Figs. 6 and 7)
where all the trajectories end in different dark nodes (solutions). This occurs
because numerous differing neural network topologies and weight combinations
can produce similar good performance.

In terms of the number of nodes visited by both algorithm variants (shared
nodes), this is relatively small in both domains (in comparison to the total
number of nodes), being smaller for the more complex pole balancing domain.
This is primarily due to the large variety of topologies being produced by the
NEAT algorithm.

5 Conclusions

We have adapted a recent graph-based optimisation analysis and visualisation
tool, Search Trajectory Networks (STNs) [9], to study the behaviour of a neu-
roevolution system (NEAT) [12]. To the best of our knowledge, this is the first
time a neuroevolution system is visualised using this technique. Our proposal
considers object serialisation in Python, combined with partitioning (rounding
off) the genotypic numerical search space, in order to manage the complexity of
NEAT growing genotypes.

We revisited the issue of the usefulness of crossover in neuroevolution sys-
tems. Contrary to what was reported in the original NEAT article [12] and to
our surprise, the results indicate that crossover slows down the evolutionary pro-
cess. We observe this, both in a standard statistical performance analysis of the
NEAT variants with and without crossover, and with the recent STN analysis.
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The NEAT trajectories with crossover, explored the search space more widely,
thus bringing diversity to the search process. This diversity, however, does not
translate into improved performance. Without crossover, NEAT trajectories to-
wards a solution are shorter and direct; thus the process is more efficient. NEAT
without crossover is also more effective, producing higher best fitness values in
our experiments. This finding is consistent with an earlier observation by Ange-
line et al. [1] who demonstrated that neuroevolution of topologies does not need
crossover to work, and indeed suggested that crossover does more harm than
good.

When contrasting the structure of the STN models of NEAT against those
of the classical optimisation benchmark functions studied in [9], we observed
that NEAT search spaces contain multiple alternative nodes that achieved the
desired fitness threshold. Therefore, there is little overlap of the neuroevolution
trajectories when progressing towards good solutions. This happens because nu-
merous differing neural network topologies and weight combinations can produce
similar behaviours. This is in contrast with the search trajectories of synthetic
optimisation benchmark functions, which tend to converge towards the portion
of the search space containing the global optimum, or towards a small number
of sub-optimal solutions attracting the search process.

Future work will explore the role of crossover in other neuroevolution set-
tings. For example, is crossover useful when solving more challenging tasks us-
ing NEAT? What about the role of crossover in other neuroevolution systems?
Furthermore, we plan to augment the STN modelling technique with additional
metrics and visual decorators, which may offer supplementary instruments to
analyse and understand more complex systems. In this research, object serial-
isation has proven to be a powerful mapping technique, that has extended the
potential reach of STNs. We hope that bringing such tools to neuroevolution
and metaheuristcs, will contribute to their understanding and explainability, as
well as guiding the way towards improving their performance. The hope is that
increasing STN adoption will further improve its analytical powers.

References

1. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Transactions on Neural Networks 5(1),
54–65 (1994)

2. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems, 1695 (2006)

3. Dinh, H., Aubert, N., Noman, N., Fujii, T., Rondelez, Y., Iba, H.: An effective
method for evolving reaction networks in synthetic biochemical systems. IEEE
Transactions on Evolutionary Computation 19(3), 374–386 (2015)

4. Hastings, E., Guha, R., Stanley, K.: Automatic content generation in the galactic
arms race video game. IEEE Transactions on Computational Intelligence and AI
in Games 1(4), 245–263 (2009)

5. Hoover, A., Stanley, K.: Exploiting functional relationships in musical composition.
Connection Science 21(2-3), 227–251 (2009)



A NEAT Visualisation of Neuroevolution Trajectories 15

6. McIntyre, A., Kallada, M., Miguel, C.G., da Silva, C.F.: neat-python.
https://github.com/CodeReclaimers/neat-python

7. Nadkarni, J., Ferreira Neves, R.: Combining neuroevolution and principal compo-
nent analysis to trade in the financial markets. Expert Systems with Applications
103, 184–195 (2018)

8. Newman, M.E.J.: Networks: an introduction. Oxford University Press, Oxford;
New York (2010)

9. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks of population-based
algorithms in continuous spaces. In: Applications of Evolutionary Computation,
EvoApps. Lecture Notes in Computer Science, vol. 12104, pp. 70–85. Springer
(2020)

10. Omelianenko, I.: Hands-On Neuroevolution with Python. Packt Publishing, Lim-
ited (2019)

11. Reingold, E.M., Tilford, J.S.: Tidier Drawings of Trees. IEEE Transactions on
Software Engineering SE-7(2), 223–228 (1981)

12. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

13. Stanley, K., Bryant, B., Miikkulainen, R.: Real-time neuroevolution in the nero
video game. IEEE Transactions on Evolutionary Computation 9(6), 653–668 (2005)

14. Wang, G., Cheng, G., Carr, T.: The application of improved neuroevolution of
augmenting topologies neural network in marcellus shale lithofacies prediction.
Computers and Geosciences 54, 50–65 (2013)


