Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorMalan, Katherine Men_UK
dc.contributor.authorBlum, Christianen_UK
dc.date.accessioned2021-05-15T00:01:05Z-
dc.date.available2021-05-15T00:01:05Z-
dc.date.issued2021-09en_UK
dc.identifier.other107492en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32613-
dc.description.abstractA large number of metaheuristics inspired by natural and social phenomena have been proposed in the last few decades, each trying to be more powerful and innovative than others. However, there is a lack of accessible tools to analyse, contrast and visualise the behaviour of metaheuristics when solving optimisation problems. When the metaphors are stripped away, are these algorithms different in their behaviour? To help to answer this question, we propose a data-driven, graph-based model, search trajectory networks (STNs) in order to analyse, visualise and directly contrast the behaviour of different types of metaheuristics. One strength of our approach is that it does not require any additional sampling or algorithmic methods. Instead, the models are constructed from data gathered while the metaheuristics are solving the optimisation problems. We present our methodology, and consider in detail two case studies covering both continuous and combinatorial optimisation. In terms of metaheuristics, our case studies cover the main current paradigms: evolutionary, swarm, and stochastic local search approaches.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationOchoa G, Malan KM & Blum C (2021) Search trajectory networks: A tool for analysing and visualising the behaviour of metaheuristics. Applied Soft Computing, 109, Art. No.: 107492. https://doi.org/10.1016/j.asoc.2021.107492en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Ochoa G, Malan KM & Blum C (2021) Search trajectory networks: A tool for analysing and visualising the behaviour of metaheuristics. Applied Soft Computing, 109, Art. No.: 107492. https://doi.org/10.1016/j.asoc.2021.107492 © 2021, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectAlgorithm analysisen_UK
dc.subjectSearch trajectoriesen_UK
dc.subjectComplex networksen_UK
dc.subjectContinuous optimisationen_UK
dc.subjectCombinatorial optimisationen_UK
dc.subjectVisualisationen_UK
dc.titleSearch trajectory networks: A tool for analysing and visualising the behaviour of metaheuristicsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2022-05-15en_UK
dc.rights.embargoreason[stns_asoc_2021.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.asoc.2021.107492en_UK
dc.citation.jtitleApplied Soft Computingen_UK
dc.citation.issn1568-4946en_UK
dc.citation.volume109en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderMinisterio de Ciencia e Innovaciónen_UK
dc.contributor.funderMinisterio de Ciencia e Innovaciónen_UK
dc.contributor.funderNational Research Foundationen_UK
dc.author.emailgabriela.ochoa@stir.ac.uken_UK
dc.citation.date14/05/2021en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of South Africaen_UK
dc.contributor.affiliationSpanish National Research Council (CSIC)en_UK
dc.identifier.isiWOS:000734390900013en_UK
dc.identifier.scopusid2-s2.0-85106260824en_UK
dc.identifier.wtid1728508en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2021-05-05en_UK
dcterms.dateAccepted2021-05-05en_UK
dc.date.filedepositdate2021-05-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorMalan, Katherine M|en_UK
local.rioxx.authorBlum, Christian|en_UK
local.rioxx.projectPID2019-104156GB-I00|Ministerio de Ciencia e Innovación|en_UK
local.rioxx.project120837|Ministerio de Ciencia e Innovación|en_UK
local.rioxx.projectPID2019-104156GB-I00|National Research Foundation|en_UK
local.rioxx.freetoreaddate2022-05-15en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2022-05-14en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2022-05-15|en_UK
local.rioxx.filenamestns_asoc_2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1568-4946en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
stns_asoc_2021.pdfFulltext - Accepted Version1.81 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.