
Search Trajectory Networks: A Tool for Analysing and

Visualising the Behaviour of Metaheuristics

Gabriela Ochoaa, Katherine M. Malanb, Christian Blumc

aComputing Science and Mathematics, University of Stirling, Stirling, Scotland, UK.
bDepartment of Decision Sciences, University of South Africa, South Africa.

cArtificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain.

Abstract

A large number of metaheuristics inspired by natural and social phenom-
ena have been proposed in the last few decades, each trying to be more pow-
erful and innovative than others. However, there is a lack of accessible tools
to analyse, contrast and visualise the behaviour of metaheuristics when solv-
ing optimisation problems. When the metaphors are stripped away, are these
algorithms different in their behaviour? To help to answer this question, we
propose a data-driven, graph-based model, search trajectory networks (STNs)
in order to analyse, visualise and directly contrast the behaviour of different
types of metaheuristics. One strength of our approach is that it does not
require any additional sampling or algorithmic methods. Instead, the mod-
els are constructed from data gathered while the metaheuristics are solving
the optimisation problems. We present our methodology, and consider in
detail two case studies covering both continuous and combinatorial optimi-
sation. In terms of metaheuristics, our case studies cover the main current
paradigms: evolutionary, swarm, and stochastic local search approaches.

Keywords: algorithm analysis, search trajectories, complex networks,
continuous optimisation, combinatorial optimisation, visualisation

1. Introduction

The last few decades have seen the introduction of a large number of
“novel” metaheuristics inspired by different natural and social phenomena.
Sörensen [1] argues that this development has taken the field a step back-
wards, rather than forwards, and that instead of more new methods, we
need critical evaluation of established methods to reveal their underlying

Preprint submitted to Applied Soft Computing May 10, 2021

Accepted refereed manuscript of: Ochoa G, Malan KM & Blum C (2021) Search trajectory networks: A tool for analysing and visualising 
the behaviour of metaheuristics. Applied Soft Computing, 109, Art. No.: 107492. https://doi.org/10.1016/j.asoc.2021.107492
© 2021, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://
creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.asoc.2021.107492
http://creativecommons.org/licenses/by-nc-nd/4.0/


mechanics. There have been attempts to describe algorithms using standard
metaphor-free terminology [2, 3]. Although this helps in understanding the
mechanisms of algorithms and in highlighting similarities and differences, it
still does not provide insight into the resulting search behaviour.

The behaviour of metaheuristics is often described in relation to the
level of exploration or exploitation, or the broader concept of intensifica-
tion/diversification (I&D) [4]. However, there is no generally accepted un-
derstanding of this concept in the evolutionary computing research commu-
nity [5] and no general way of analysing or measuring the level of I&D of
metaheuristics. Convergence analysis (measured through diversity of solu-
tions) of population-based algorithms is related to I&D and is one way of
describing algorithm behaviour. However, knowing when a population con-
verges ignores where in the search space this is happening and hence whether
convergence is premature or not. Convergence analysis is also not applicable
to single-point metaheuristics.

Others have proposed techniques for visualising the behaviour of search al-
gorithms [6–9]. These approaches use dimensionality reduction to map search
spaces to two or three dimensions and in this way track search progress. Our
proposed STN model is similar in aim to these approaches, except that STNs
are graph objects with nodes and edges that can be analysed and visualised,
rather than the full search space reduced to a visualisable Cartesian plane.

Many natural and technological systems are composed of a large num-
ber of highly interconnected units; examples are neural networks, biological
and chemical systems, social interacting species, the Internet and the World
Wide Web. A key approach to capture the global properties of such systems
is to model them as graphs whose nodes represent the units, and whose links
stand for the interactions between them. This simple, yet powerful concept
has been used to study a variety of complex systems where the goal is to
analyse the pattern of connections between components in order to under-
stand the behaviour of the system. Once a system is modelled as a network,
an extensive set of mathematical and computational tools is available for
analysing, understanding and visualising the system [10, 11]. We argue that
understanding and contrasting the behaviour of metaheuristics is a complex
task, and thus complex systems tools are paramount. We therefore pro-
pose a data-driven network model to analyse and visualise the behaviour of
metaheuristics.

We initially presented the concept of search trajectory networks in a recent
conference paper [12], where we modelled the dynamics of two population-

2



based algorithms when solving continuous benchmark functions. Here, we
extend and generalise the concepts, methodology and computational exper-
iments to cover not only population-based approaches, but also stochastic
local search methods (also called single-point metaheuristics) and both con-
tinuous and combinatorial optimisation. We emphasise the use of this mod-
elling technique to directly contrast the behaviour of different types of meta-
heuristics in a unified model that can be analysed quantitatively and visually.
Since constructing, analysing and visualising the networks are key contribu-
tions of this article, our STNs repository 1 provides the required source code
(R scripts) and example datasets to create, merge, analyse and visualise the
STN models for both continuous and discrete optimisation problems.

The outline of this paper is as follows. Section 2 gives an overview of
related work. Section 3 gives the relevant definitions behind search trajectory
networks (STNs), describes the approach to construct the data-driven models
and presents a simple illustrative example. Thereafter, two case studies are
thoroughly presented to illustrate the application of STNs to contrast and
understand the behaviour of different types of metaheuristics when solving
continuous (Section 4) and combinatorial (Section 5) optimisation problems,
respectively. Finally, our concluding remarks and suggestions for future work
are discussed in in Section 6.

2. Related Work

The initial inspiration for STNs came from the study of local optima net-
works (LONs) [13, 14], which are a compressed model of fitness landscapes
where nodes are local optima and edges represent possible transitions be-
tween optima with a given search operator. LONs in turn were inspired by
network-based models of energy landscapes in computational chemistry [15].
Disconnectivity graphs [16, 17], also known as barrier trees [18], are another
graph-based modelling tool originated from the study of energy landscapes,
which has also been applied to model the fitness landscapes of optimisation
problems [19]. STNs differ from these tools as the goal is not to model the
structure of fitness landscapes, but instead the search behaviour of optimi-
sation algorithms.

A recent body of work has used networks to understand the dynamics
of population based algorithms. The idea, as initially proposed by Zelinka

1https://github.com/gabro8a/STNs.git

3

https://github.com/gabro8a/STNs.git


and Davendra [20], is to use graphs whose connections represent interactions
amongst the individuals during all generations; vertices are individuals that
are activated by other individuals, incrementally from generation to genera-
tion. Follow-up work has studied differential evolution [21, 22] and particle
swarm optimisation methods using this approach [23, 24], where the empha-
sis is to model the communication or influence of individuals (or particles)
inside the population or swarm. These network models have been shown to
be useful for visualising the behaviour and capturing the trade-off between
exploration and exploitation of the studied algorithms. STNs differ from
these approaches as the main goal is not to model the interactions among
candidate solutions in the population, but instead to model the trajectories
of representative solutions across the search process. Moreover, STNs can be
applied to any metaheuristic, not only to population-based ones, and merged
STNs allow us to directly contrast the behaviour of different metaheuristics.

In population-based algorithms, the way in which diversity changes over
time can be seen as an approach to characterise algorithm behaviour. Bosman
and Engelbrecht [25] proposed a single numerical measure called diversity rate
of change for characterising the exploration-exploitation trade-off in particle
swarms. Their premise was that the profile of the reduction in diversity
(measured using the average Euclidean distance around the centre of the
swarm [26]) could be captured by the slopes of a two-piecewise linear ap-
proximation of the diversity over time. Although diversity provides one im-
portant view of algorithm behaviour, it ignores where in the search space the
population is moving and hence whether convergence is premature or not.

In the domain of multi-objective optimisation involving more than three
objectives, there is a body of literature involving the visualisation of Pareto
front approximations [27]. These approaches involve dimensionality reduc-
tion techniques to show algorithm progression in improving objective values
over time. Trace generation plots [28] are similar in that they show how the
hypervolume value changes over generations. Although these visualisation
approaches can help in understanding and contrasting algorithm behaviour,
they differ from STNs as they are visualising objective space, rather than
solution space.

A different approach to tracking search dynamics is to map multi-dimensional
solutions into lower dimensions to visualise how trajectories of solutions
change over time. Dimensionality reduction techniques that have been used
for this aim include principal component analysis [6], Sammon mapping [7],
and t-distributed stochastic neighbour embedding [8]. With this approach,

4



the positions of solutions relative to each other and the movement of individ-
uals in a population can be visualised over an algorithm run using a sequence
of 2-D frames or a 3-D stacking of 2-D frames [9]. STNs are similar to these
approaches in that they also provide a visualisation of search dynamics and
trajectories, but the main difference is that the location information and
movement through the search space is captured in a graph object, allowing
the information to be analysed using a wealth of mathematical and visualisa-
tion tools. Our approach also includes the ability to analyse the information
at different levels of granularity of the search space by simply changing the
definition of a location in the model.

3. Search Trajectory Networks (STNs)

3.1. Definitions

In order to define a network model, we need to specify the nodes and
edges. The relevant definitions are given below.

Representative solution. A solution to the optimisation problem at a
given time step that represents the status of the search algorithm based
on predefined criteria. For example, in a population-based algorithm, the
best solution in the population at the given iteration might be chosen as
the representative solution, whereas in a single-point method the incumbent
solution is the obvious choice for a representative solution.

Location. A non-empty subset of solutions that results from a predefined
partitioning of the search space. Each solution in the search space is an ele-
ment of one and only one location. Each location is assigned a representative
objective value using predefined criteria. In discrete search spaces, a location
can be modelled as a single solution.

Search trajectory. Given a sequence of representative solutions in the or-
der in which they are encountered during the search process, a search trajec-
tory is defined as a sequence of locations formed by replacing each solution
with its corresponding location. The frequency of recording the representa-
tive solutions in the trajectory is specified using predefined criteria.

Node. A location in a search trajectory of the search process being modelled.
The set of nodes is denoted by N .

5



Edges. Edges are directed and connect two consecutive locations in the
search trajectory. Edges are weighted with the number of times a transi-
tion between two given nodes occurred during the process of sampling and
constructing the STN. The set of edges is denoted by E.

Search Trajectory Network (STN). An STN is a directed graph STN =
G(N,E), with node set N , and edge set E as defined above.

3.2. Sampling and Model Construction

One strength of our approach is that it does not require implementing any
specific sampling or data gathering method to construct the models. Instead,
the data to construct the models is gathered while the algorithm under study
is running. Specifically, the required output from a run of the algorithm is a
list of steps (edges) connecting two adjacent representative solutions in the
search process. Each search step (algorithm iteration) is stored as an an entry
in a log file containing the two consecutive representative solutions being
linked with the step. Both the encoding (solution vector) and evaluation
(fitness value) of each representative solution in a step are stored.

STN model. Once the data logs of a predefined number of runs of a given
algorithm-problem instance pair are gathered, a post-processing step aggre-
gates all the representative solutions and transitions to construct a single
network object. A mapping between the representative solutions and their
unique locations and objective values is required. For minimisation prob-
lems, the representative objective value is the minimum objective value of all
solutions that visited a location across all runs. The mapping from solutions
to locations depends on the search space under consideration. Examples of
such mappings in continuous and discrete search spaces are given in the case
studies (Sections, 4 and 5), respectively. When constructing the network
models, counters are kept as attributes for both nodes and edges to account
the number of times they were visited during the sampling process.

Merged STN model. Once the STN models for a set of algorithm-instance
pairs are constructed, we can proceed to merge the STNs of different algo-
rithms for a given problem instance. Let us assume we have two algorithms.
The merged STN model of the two algorithms for a given instance is ob-
tained by the graph union of the two individual graphs for that instance.
More formally, let STNA = G(NA, EA) and STNB = G(NB, EB) be the STNs
of algorithms A and B for a given instance. We then construct STNmerged as

6



the union of the two graphs. Specifically, STNmerged = G(NA∪NB, EA∪EB).
The merged graph contains the nodes and edges that are present in at least
one of the algorithm graphs. Attributes are kept for the nodes and edges
indicating whether they were visited by both algorithms or by one of them
only.

3.3. Network Metrics

Once a system is modelled as a graph, many structural properties can be
computed. The most basic metrics are the number of nodes and edges, but a
variety of other metrics could be calculated such as the degree distribution,
length of paths, community structure, and centrality of nodes to name a few
[10]. To keep things simple we propose five straightforward network met-
rics to assess the global structure of the trajectories, and thus bring insight
into the difficulty of the instances and the behaviour of the metaheuristics
modelled. These metrics are summarised in Table 1. It is worth noting that
additional metrics could also be considered.

The justification of this selection of metrics is as follows. The total num-
ber of nodes, ntotal, gives an idea of the amount of the search space that was
explored. The number of nodes with best-found evaluation, nbest, indicates
whether different locations of the search space evaluate to best-found fitness.
The number of nodes at the end of trajectories (different than the best nodes),
nend, indicates how likely it is for trajectories to end up in sub-optimal lo-
cations. The number of shared nodes, nshared, indicates whether there are
solutions or areas of the search space that tend to attract the trajectories of
different algorithms.

The degree of a node in a graph is simply the number of edges connected
to it. In directed graphs, such as STNs, we can distinguish incoming and
outgoing edges, and thus incoming and outgoing degrees. Moreover, when
edges are weighted such as in STNs, it is customary to use the weighted
degree of a node, also called strength in graph theory terminology, which is
based on the number of edges connected to the node, but ponderated by the
weight of each edge.

Our final metric (best-strength) computes the incoming weighted degree
of the best node(s). When there is more than one best node, this metric
simply sums their incoming strengths. In order to have values between zero
and one, we normalise this metric by the number of algorithm runs used to
sample and construct the STN model(s). This metric evaluates to one when
all runs end in a best found solution. Note that best-strength provides a

7



measure of the the centrality and reachability of the best-found solution(s).
It is worth noting that the centrality of good solutions has been found to
correlate with search difficulty in the study of local optima networks [29, 30].

Table 1: Description of network metrics.

ntotal Total number of nodes.
nbest Number of nodes with the the best-found evaluation.
nend Number of nodes at the end of trajectories (other than

the nodes with the best evaluation).
nshared Number of nodes visited by more than one algorithm.

best-strength Normalised incoming strength (weighted degree) of the
best node(s).

3.4. Network Visualisation

Visualisation is a powerful tool that may allow us to appreciate struc-
tural features which can be difficult to infer from the network metrics alone.
The most common visual representation of a network, which we have used
throughout this paper, is the so-called node-edge diagram. Node-edge dia-
grams assign the nodes to points in the two-dimensional or three-dimensional
Euclidean space, and connect adjacent nodes by straight lines or curves. Ar-
rowheads are used to indicate the direction of connections in the context of
directed graphs. Nodes are then drawn on top of the edges using simple geo-
metric shapes. Moreover, the most important attributes of nodes and edges
are assigned to visual properties (such as size and colour) of the shapes and
lines; for instance, the area of a circle can be made proportional to the degree
of the node in order to highlight hubs (i.e. highly connected nodes).

The graph visualisations in this paper were produced with the igraph li-
brary [31] of the R programming language. We considered force-directed lay-
out algorithms, such as Fruchterman-Reignold [32] and Kamada-Kawai [33].
Force-directed layout algorithms are based on physical analogies and do not
rely on any assumptions about the structure of the networks. These algo-
rithms strive to satisfy the following generally accepted criteria [32]:

• Vertices are distributed roughly evenly on the plane (a circle in the
igraph implementation).

• The number of crossing edges is minimised.

8



• The lengths of edges are approximately uniform.

• The inherent symmetries in the networks are respected, i.e., sub-networks
with similar inherent structure are usually laid out in a similar manner.

Note that the R scripts for creating, visualising and analysing the STN
models presented in this paper are provided at https://github.com/gabro8a/
STNs.git. The repository also contains example datasets and a README
file explaining the input format and how to use the scripts provided.

3.5. Illustrative Example

To illustrate the concept of an STN and how it is constructed, we provide
a simple example in continuous optimisation where the search space can be
visualised alongside the STN. Figure 1a shows the Schwefel 2.26 benchmark
function, which is to be minimised, in two dimensions. The fitness landscape
is multi-modal with a multi-funnelled global structure [34]. The global opti-
mum is found at the upper right corner of the plot, approximately at position
(420, 420).

Figure 1b shows the contour plot of the problem where areas of higher fit-
ness are shaded darker. The global optimum position is shown in the contour
plot as a red dot. The example considers iterated local search (ILS) [35]—
which is a simple, yet powerful, search strategy combining a perturbation
stage with a hill-climbing (local search) process—and a version of differential
evolution (DE) [36]. Three runs of each algorithm were executed on the prob-
lem and the trajectories are shown on the contour plot in blue for ILS and
orange for DE. Initial random positions are shown as yellow filled-in squares
and sub-optimal end points are shown as black filled-in triangles. Each arrow
indicates the start and end of an improving iteration of ILS (perturbation
from previous position followed by local search) or a change in the best indi-
vidual of the DE population. The plot of the trajectories in the actual search
space is quite messy and difficult to interpret. It is not that clear to see, but
one of the three blue ILS runs successfully finds the global optimum and two
of the orange DE runs also reach the global optimum. The two unsuccessful
runs of the ILS end in the same local optimum, approximately at position
(−300, 420), while the one unsuccessful DE run ends in the local optimum in
the bottom right corner.

Figure 1c shows the merged STN constructed from the trajectories visu-
alised in Figure 1b. Nodes correspond to locations and edges to transitions

9

https://github.com/gabro8a/STNs.git
https://github.com/gabro8a/STNs.git


-400
-200

 0
 200

 400
-400

-200

 0

 200

 400

(a) Three dimensional view of the prob-
lem landscape. The global optimum
can be seen in the upper right corner.

-400 -200  0  200  400

-400

-200

 0

 200

 400

-1000

-500

 0

 500

 1000

 1500

(b) Contour plot with three trajecto-
ries of ILS (blue arrows) and three of
DE (orange arrows). Yellow squares de-
note the starting positions, black trian-
gles the sub-optimal end points and the
red dot the global optimum. Three of
the runs (two DE and one ILS) found
the global optimum.

KK N: 33 E: 33 C: 1

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

271

58

227

0

2

210

118

132

15 36

132

40

391
505

509

146

295

473

237

375

260

316

702

238

594

1169853

474
336

118 513

519296

●
●
●
●

Start
End
Best
DE
ILS
Shared

(c) Merged STN. The size of nodes is proportional to their incoming degree. Node
labels indicate the difference in evaluation from the optimum. Yellow squares
denote the starting locations of the six runs. The red node is the best-found
solution, which is reached by two DE runs and one ILS run.

Figure 1: Illustrative example of a merged STN representing the search process of ILS and
of DE on the Schwefel 2.26 benchmark function in two dimensions.

10



between them. As indicated in the legend, the colour and shape of nodes
reflect their type. Yellow squares indicate the start of trajectories, while
dark grey triangles the end of trajectories. The red circle distinguishes the
best-found location (which in this case contains the global optimum). The
remaining intermediate nodes are circles coloured by the algorithm that tra-
versed them (orange for DE and blue for ILS). If a node is traversed by more
than one algorithm, it is painted in light grey. Notice that in this small ex-
ample there are no light grey nodes as the only shared node is an end node
(triangle in the middle of the figure, just below the global optimum), and the
decoration of end nodes has precedence over that of shared nodes. The size
of nodes is proportional to their incoming strength (weighted degree). The
colour of an edge indicates the algorithm that traversed it. Edges traversed
by more than one algorithm are painted in grey. However, this does not
happen in this small example. The width of an edge is proportional to the
number of times it was traversed.

It can be seen in Figure 1c that one of the ILS trajectories and two
of the DE trajectories end in the best location (red node). The two other
ILS trajectories end in the same node (dark grey triangle at the bottom
of the figure), while the third DE trajectory ends in a different location
(dark grey triangle in the middle of the figure). It is interesting to see that
the unsuccessful DE run ends in a location that is visited by the successful
ILS trajectory before escaping from it to reach the best node. This STN
visualisation is certainly a much clearer illustration of the search behaviour
when compared to 1b.

Table 2 shows the metrics described in Table 1 for the merged STN visu-
alised in Figure 1c. The metrics of each individual algorithm’s STN model
are also shown. The ntotal metric indicates that DE has longer trajectories
than ILS, which may be a sign of a wider exploration of the search space.
The lower value of nend and the higher value of best-strength of the DE STN
in comparison to the ILS STN, respectively, indicate that DE is less likely to
end up in a sub-optimal solution and is more likely to reach the best solution
for this instance.

The simple example in Figure 1 shows how an STN is an abstract visual
representation of search trajectories. Note that in the context of discrete
optimisation (or continuous optimisation in more than two dimensions) it is
not possible to visualise the trajectories in the actual search space as was
done in Figure 1b. STNs, however, can be used to visualise the essential
information of search trajectories for any problem size to gain insight into

11



Table 2: STN metrics for the illustrative example representing the search process of ILS
and of DE on the Schwefel 2.26 benchmark function in two dimensions. A description of
the metrics can be found in Table 1.

STN model ntotal nbest nend nshared best-strength

Merged 33 1 2 2 0.5

DE 23 1 1 NA 0.67

ILS 12 1 1 NA 0.33

the search behaviour of algorithms.

4. Continuous Optimisation Case Study

4.1. Problem Formulation

The continuous optimisation problems considered are single-objective,
static, bound-constrained, multivariate minimisation problems. In general
such a problem can be defined as:

min f(x), f : Rn → R, x ∈ S ⊆ Rn,

where x is an n-dimensional candidate solution vector and S defines the
feasible sub-region of Rn as defined by the domains of the variables within x.
In this study, it is assumed that S is defined by simple boundary constraints,
which are the same for all components of the solution vector; that is,

xmin ≤ xi ≤ xmax ∀x ∈ S, 1 ≤ i ≤ n.

4.2. Benchmark Instances

A sample of five minimisation benchmark functions (defined in Table 3)
with different characteristics were chosen for demonstrating the proposed
STN model in continuous spaces.

Quadric (also known as Schwefel 1.2) [37] is the only unimodal problem.
Michalewicz [38] is multimodal, but also has large plateaus at high fitness
values. Schwefel 2.26 [37] is multimodal and also multi-funnelled. Both
Salomon [36] and Rana [36] are extremely rugged, but Salomon has a single-
funnel global structure, whereas Rana has a multi-funnel structure. For the
experimentation we used Rana and Salomon in 3 dimensions, Michalewicz
and Schwefel 2.26 in 5 dimensions and Quadric in 10 dimensions.

12



Table 3: Scalable benchmark functions (D is the dimension)

Function Definition and Domain

Michalewicz f(x) = −
∑D

i=1 sin(xi) (sin(ix2i /π))
2p
, xi ∈ [0, π]

Quadric f(x) =
∑D

i=1

(∑i
j=1 xj

)2
, xi ∈ [−100, 100]

Rana f(x) =
∑D

i=1 xi sin(α) cos(β) +
(
x(i+1)modD + 1

)
cos(α) sin(β),

D ≥ 2, α =
√
|xi+1 + 1− xi|, β =

√
|xi + xi+1 + 1|,

xi ∈ [−512, 512]

Salomon f(x) = − cos

(
2π
√∑D

i=1 x
2
i

)
+ 0.1

√∑D
i=1 x

2
i + 1,

xi ∈ [−100, 100]

Schwefel 2.26 f(x) = −
∑D

i=1

(
xi sin(

√
|xi|)

)
, xi ∈ [−500, 500]

4.3. Metaheuristic Algorithms

For demonstration purposes, we implemented three algorithms for solving
problems in continuous spaces: a swarm-based algorithm, an evolutionary
algorithm, and an iterated local search (ILS) algorithm.

Particle swarm optimisation (PSO) was used for the swarm-based algo-
rithm and differential evolution (DE) for the evolutionary algorithm. The
version of PSO used in the study was traditional global best PSO [39, 40]
with an inertia weight term [41], 50 particles, 1.496 for both the cognitive and
social acceleration constants, and 0.7298 for the inertia weight (although the
optimal choice of parameters is problem dependent, this is a common choice
that works reasonably well for many problems [42]). The particular ver-
sion of DE used in the study was DE/rand/1 [43], with uniform crossover, a
population size of 50, a scale factor of 0.5, and a crossover rate of 0.5.

In the continuous domain, and particularly within the computational
chemistry community, ILS is known as the basin-hopping algorithm [44]. Our
implementation starts at a random location and executes a local minimisation
step using a run of the limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm (L-BFGS) [45] – a quasi-Newton method that approximates the

13



BFGS algorithm using limited memory. We used the L-BFGS implementa-
tion from the SciPy Python package [46]. From the resulting local optimum,
a random perturbation is performed and the process is repeated until the
budget of objective function evaluations has been reached.

We would like to clarify at this point that these three algorithms (and
their parameter settings) were chosen for demonstration purposes. It is not
our intention to make claims about the relative quality of the algorithms.
Therefore, parameter tuning is not necessary. We are rather showing that
if one search process is more successful than another one on a particular
problem, the STN model can shed light on why this is the case.

4.4. Search Space Partitioning

As defined in Section 3, a location is a non-empty subset of solutions
that results from a predefined partitioning of the search space. In this study,
a continuous search space was partitioned into discrete hypercubes of a set
length, defining a location as a hypercube of solutions.

A partition factor parameter (PF ) was used to portion the space into
hypercubes with length 10PF . For example, if PF = −2, then the solution
space was divided into hypercubes of length 10−2 and each location (node in
the STN) was equivalent to one of these hypercubes. Solutions were mapped
to locations by rounding off all components of the position to the nearest
10PF to determine the identity of the enclosing hypercube.

To extract meaningful insights from the STN model, the size of partitions
should be larger for larger search spaces. In this study, (assuming that the
domain of values is the same for each dimension of the problem) the value
for PF was expressed as a function of the range of the domain (xmax−xmin)
and dimension (D) of the problem as follows: PF is set to n− 2, where n is
the largest integer for which the following is true:

(xmax − xmin)×D ≥ 10n. (1)

For example, given a problem in three dimensions with domain [−1, 1] in all
dimensions, PF would be set to −2, since 2× 3 ≥ 100. For this problem, a
location/node in the STN would be equivalent to a unique 0.01× 0.01× 0.01
cube in the search space.

4.5. Experimental Results

We implemented the three algorithms described in Section 4.3. Ten inde-
pendent runs were executed of each algorithm on the five benchmark prob-

14



lems. Each run had a budget of 5000×D function evaluations. Representa-
tive solutions were stored for each run to form the basis of the STN graphs.
For the population-based algorithms, the representative solutions were the
best solutions of every iteration (the best in the population), whereas for the
ILS, the representative solutions were the local optima found at the end of
each run of the local search. The objective value of solutions was also stored
(as a difference in value from the global optimum), rounded off to a precision
of 10−8. When generating the STN data, each solution was mapped to a
location using the search space partitioning approach described in Section
4.4, resulting in PF values with associated partitions as shown in Table 4.

Table 4: Numeric benchmark instances with associated PF parameter values and partiti-
tions.

Instance Dimension Range PF value Partition

Michalewicz 5D xi ∈ [0, π] PF = −1 hypercubes of length 0.1

Quadric 10D xi ∈ [−100, 100] PF = 1 hypercubes of length 10

Rana 3D xi ∈ [−512, 512] PF = 1 hypercubes of length 10

Salomon 3D xi ∈ [−100, 100] PF = 0 hypercubes of length 1

Schwefel 2.26 5D xi ∈ [−500, 500] PF = 1 hypercubes of length 10

Results and Discussion. For discussion purposes, Table 5 gives the per-
formance of the three algorithms on the five problem instances. For example,
we see that the ILS algorithm performed poorly on the Michalewicz problem
(none of the 10 runs were able to locate the global optimum), but performed
very well on Salomon (9 out of 10 runs located the global optimum). It can
also be seen that although DE achieved a 0% success rate on Salomon, the
average fitness difference from the origin was very low (0.06) indicating that
the runs came close to the optimal fitness value.

Figure 2 shows the merged STNs for the Rana function (3D) at three
different levels of partitioning. On this instance, PSO, DE and ILS achieved
success rates of 0%, 80% and 40% respectively (Table 5). The STN with
medium partitioning in Figure 2a shows that all except two of the DE runs
(in orange) converged on the location of the best solution (which in this case
contains the global optimum), corresponding with the reported success rate
of 80%. Likewise, four ILS trajectories converge on the global optimum, cor-
responding with the 40% success rate. The three green PSO runs that appear

15



Table 5: Performance metrics for PSO, DE, and ILS: FD (mean fitness difference from
the optimum) with standard deviation (±σ) and SRate (percentage of runs finding the
global optimum to within 10−4).

Instance PSO DE ILS

FD (±σ) SRate FD (±σ) SRate FD (±σ) SRate

Michalewicz 0.04 (±0.05) 40% 0.00 (±0.01) 90% 2.69 (±0.78) 0%

Quadric 0.00 (±0.00) 100% 0.00 (±0.00) 100% 0.00 (±0.00) 100%

Rana 150.28 (±95.75) 0% 7.65 (±16.90) 80% 83.42 (±85.36) 40%

Salomon 0.08 (±0.04) 20% 0.06 (±0.03) 0% 0.00 (±0.00) 90%

Schwefel 2.26 165.81 (±114.42) 20% 0.00 (±0.00) 100% 355.32 (±124.84) 0%

in the cluster around the optimal value, however, can be seen to share loca-
tions with successful DE trajectories, but then end in sub-optimal locations
(black triangles). The remaining PSO runs mostly explored different parts
of the search space, shown as mostly unconnected green trajectories.

Insights are less clear with too coarse and too fine partitioning. In the case
of the coarse partitioning in Figure 2b, locations are defined as hypercubes
with length 100 (resulting in a partitioning of the space into 123 = 1728
locations). With the larger partitions, a number of nodes in the graph merged
and this results in more overlap between trajectories. It is less clear at a
glance to see difference between the behaviours of the three algorithms. In the
case of the fine partitioning in Figure 2c, locations are defined as hypercubes
with length 0.1 (a partitioning of the space into 102403 locations). The fine
partitioning results in a disjointed STN, losing some of the information on
trajectories overlapping in the search space.

Table 6 provides the metrics for the merged STNs for all problem in-
stances and Figure 3 shows the STN metrics per algorithm as bar graphs.
The metrics of merged STNs give an indication of the features and relative
difficulty of the problem instances. For example, the maximal best-strength
of Quadric with relatively low nshared indicates that many different paths
led to the best solution. In contrast, the low best-strength of Rana with as-
sociated high nend shows the presence of many local attractors in the search
space. The number of nodes in the individual algorithm STNs (seen on the
left in Figure 3) gives an indication of the lengths of the trajectories. For
example, although all algorithms successfully solved Quadric, it can be seen
that ILS reached the best solution in far fewer steps than PSO and DE,

16



KK Layout

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●
● ●

●

●

●
●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●
●

●
●

●

●
●
●
●
●

Start
End
Best
PSO
DE
ILS
Shared

(a) Medium partitioning, PF = 1.FR layout

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

Start
End
Best
PSO
DE
ILS
Shared

(b) Coarse partitioning, PF = 2 .

KK Layout

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
● ●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●● ●

●

●

●
●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ● ●
●

●
● ● ● ●

●
●

●

●

●

●
●

● ●
●

● ● ●●
●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●
●

● ●

●

●
●

●
●

●

●

●
●

●

● ●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●
●
●

●

● ●
● ● ●

●
●

●
●

●

●

●
●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

● ●

●
●
●
●
●

Start
End
Best
PSO
DE
ILS
Shared

(c) Fine partitioning, PF = −1 .

Figure 2: Merged STNs for the Rana benchmark, showing three search space partitioning
levels.

17



Table 6: Merged STN metrics for the continuous problem instances (using partition factors
as given in Table 4). A description of all metrics is found in Table 1.

ntotal nbest nend nshared best-strength

Michalewicz 288 1 14 10 0.67

Quadric 539 1 0 7 1.00

Rana 354 1 15 10 0.43

Salomon 260 1 4 22 0.77

Schwefel 2.26 376 1 10 8 0.57

reflected in the lower number of nodes in the STN.
Considering the best-strength with the nend metric can also shed light on

the nature of the problem. For example, although Michalewicz and Salomon
have similar values for best-strength, the value of nend is significantly lower
for Salomon. This means that many trajectories are ending in the same loca-
tions, indicating the presence of fewer, but stronger local-optima attractors
than in the case of Michalewicz.

In most cases, best-strength corresponds with the success rate of the al-
gorithm, but not always. For example, in the case of Salomon, the success
rates of DE and ILS were 0% and 90%, respectively (Table 5). However, in
Figure 3, it can be seen that the best-strength of DE and ILS for Salomon are
equal at 0.9. This means that although 90% of the runs for both algorithms
are reaching the partition containing the global optimum, the runs of DE do
not quite reach the global optimum (to within 10−4 as defined for the success
rate measure). This is also reflected in the low FD value for DE on Salomon
in Table 5.

In contrast to Rana, the STN of Salomon in Figure 4a provides a dif-
ferent pattern of search behaviour. Although the landscape of Salomon is
very rugged, it has a single funnel global structure [36]. The STN shows
that all algorithms are drawn in the same direction towards the region of the
global optimum. To better see the detail around the global optimum, Fig-
ure 4b provides a zoomed visualisation of the STN, plotting the sub-graph
containing the set of the best 25% of the nodes. It can be seen that there
are many shared nodes between the different algorithms (light gray nodes)
and that although some runs end in the best location, a number of runs end
in the same sub-optimal end points (black triangles). The landscape of Sa-

18



0

100

200

300

Michalewicz Quadric Rana Salomon Schwefel

no
de

s

0.00

0.25

0.50

0.75

1.00

Michalewicz Quadric Rana Salomon Schwefel

be
st

−
st

re
ng

th

Algorithm PSO DE ILS

Figure 3: Algorithm-specific metrics for the continuous problem instances. A description
of the metrics is found in Table 1.

lomon has been described as resembling “a pond with ripples” [36] around
the global optimum and Figure 4b is showing the trajectories converging on
the “ripples” around the optimum.

5. Combinatorial Optimisation Case Study

5.1. Problem Formulation

As a showcase for combinatorial optimisation we chose the well-known
p-median problem, a classic facility location problem [47]. In the p-median
problem, the goal is to locate p facilities among n > p demand points. Af-
ter locating the facilities, each demand point is allocated to the closest (or
cheapest) facility. Hereby, dij ≥ 0 is the distance (or travel cost) between de-
mand points i, j ∈ {1, . . . , n}. The minimisation objective is to locate the p
facilities such that the sum of the distances (travel costs) is minimised. The
p-median problem can be expressed in terms of an integer linear program

19



KK Layout

●●●
●

●

● ●

●

●

●

●

●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

Start
End
Best
PSO
DE
ILS
Shared

(a) Full STN.

Zoomed (top 25%) KK

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

Start
End
Best
PSO
DE
ILS
Shared

(b) Zoomed visualisation of the STN
showing only those nodes within the first
quantile of fitness values (the best 25%
of the nodes).

Figure 4: STNs for the Salomon benchmark.

(ILP) in the following way.

min
n∑

i=1

n∑
j=1

dijxij

s.t.
n∑

j=1

xij = 1 i = 1, . . . , n

xij ≤ yj i, j = 1, . . . , n
n∑

j=1

yj = p

xij ∈ {0, 1} i, j = 1, . . . , n

yj ∈ {0, 1} j = 1, . . . , n

Hereby, yj is a binary variable that indicates if a facility is located in demand
point j, j = 1, . . . , n. Moreover, xij is a binary variable that indicates if, or
not, demand point i is allocated to facility j.

20



Algorithm 1 Solution construction (p-median problem)

1: S := ∅
2: while |S| < p do
3: j∗ := Choose(S)
4: S := S ∪ {j∗}
5: end while
6: output: S

5.2. Benchmark Instances

The production and visualisation of STNs in the case of the p-median
problem is done using five problem instances from the related literature. In
particular we make use of instances {pmed6, . . . , pmed10} from OR-Library,
which is a well-known collection of instances for a large number of problems.2

All five problems have 200 demand points (n = 200) and request to open
a varying number of facilities (that is, p ranges from 5 in pmed6 to 67 in
pmed10).

5.3. Metaheuristic Algorithms

We implemented an ant colony optimisation (ACO) approach, a biased
random key genetic algorithm (BRKGA), and an iterated local search (ILS)
metaheuristic for solving the p-median problem. Note that ACO and BRKGA
are population-based approaches, while ILS is an algorithm based on local
search. In all three cases we implemented rather standard algorithm ver-
sions, because the aim of this study is to demonstrate how the performance
of the algorithms can be compared by means of STNs, rather than to develop
high-performance versions of these algorithms. In the following we provide a
brief description of the algorithm implementations.

Both ACO and BRKGA require a constructive procedure for generating
feasible solutions. In the case of ACO, this procedure will be used for gener-
ating solutions at each iteration, while in the case of BRKGA, this procedure
will be used for translating individuals into feasible solutions. In the follow-
ing, let S with |S| ≤ p be a subset of the n demand points. Note that such
a subset corresponds to a partial solution in case |S| < p, and to a com-
plete solution otherwise. Let ji,min := argminj∈Sdij for all i = 1, . . . , n.

2These instances can be downloaded from http://people.brunel.ac.uk/~mastjjb/

jeb/info.html.

21

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html


The objective function value f(S) of a (partial) solution S can then be
expressed as follows: f(S) :=

∑n
i=1 di,ji,min

. The basic procedure for con-
structing solutions to the p-median problem is shown in Algorithm 1. It
starts with an empty solution S = ∅, and adds—at each iteration—exactly
one demand point from {1, . . . , n} \ S to S until |S| = p. When used as
a deterministic greedy algorithm, function Choose(S) (see line 3 of Algo-
rithm 1) is implemented as follows. It chooses the demand point j∗ such
that j∗ := argminj∈{1,...,n}\Sf(S ∪ {j}).

Implementation of ACO. We implemented a standard MAX -MIN Ant
System in the Hyper-cube Framework as described, for example, in [48]. Only
the pheromone model needs to be described, together with the way in which
the pheromone values are used for constructing solutions at each algorithm
iteration. More specifically, the algorithm makes use of a pheromone value
τj ≥ 0 for each demand point j = 1, . . . , n. When constructing a solution
with Algorithm 1, function Choose(S) is implemented as follows. At each
construction step, first, a probability p(j | S) for choosing j ∈ {1, . . . , n} \S
is determined as follows:

p(j | S) :=
τj/f(S ∪ {j})∑

k∈{1,...,n}\S τk/f(S ∪ {k})

Second, a random value λ from [0, 1] is chosen. If λ ≤ drate, j
∗ is chosen

such that j∗ := argmaxj∈{1,...,n}\Sp(j | S), that is, the demand point with the
highest probability is deterministically chosen. Otherwise, j∗ is determined
by roulette wheel selection based on the probabilities. We chose a standard
parameter value setting of 10 solution constructions per iteration, and a de-
terminism rate (drate) of 0.7.

Implementation of BRKGA. The algorithm that was implemented for the p-
median problem is a standard BRKGA as described in [49]. We only need to
describe individuals and the procedure for producing a solution on the basis
of an individual. More specifically, an individual is an array π of length n in
which each position πj (j = 1, . . . , n) is a value from [0, 1]. The procedure
of Algorithm 1 is used in the following way for translating an individual into
a solution. At each step of Algorithm 1, function Choose(S) is implemented
such that j∗ := argminj∈{1,...,n}\Sπj ·f(S∪{j}). For the experiments we used

22



standard parameter values, such as a population size of 100, 15% of elite
individuals, 20% of mutants, and a probability of inheritance from the elite
parent of 0.6.

Implementation of ILS. The framework of an ILS (see, for example, [35]) is
rather unsophisticated. The algorithm requires a starting solution, a mech-
anism for perturbing the current solution at each iteration, a local search
procedure for improving the perturbed solutions, and an acceptance criterion
for choosing the current solution for the next iteration. Our ILS implementa-
tion for the p-median problem uses a randomly generated solution as starting
solution. The perturbation mechanism applies a series of x random demand
point swaps, each one consisting of the removal of a random demand point
from the current solution Scur and adding a randomly chosen demand point
from {1, . . . , n} \Scur. The size of x is discussed below. Concerning the local
search procedure, we use a first-improvement local search based on demand
point swaps. Considering the demand points in the order given by their in-
dices, the first improving swap that is encountered is performed. In order
to shorten the running time of a single local search run, each local search
run is stopped after at most dp/2e swaps. The acceptance criterion chooses
either the current solution Scur, or the solution obtained after applying per-
turbation and local search, to be the current solution of the next iteration.
Our ILS simply chooses the best one among the two solutions. Finally, the
number of perturbation swaps (x) is determined in a dynamic way that is
known from the mechanism for choosing among different neighbourhoods in
variable neighbourhood search (VNS) [50]. More specifically, x is taken from
{max{2, b0.05pc}, . . . , d0.5pe}.

5.4. Search Space Partitioning

As shown before in the context of the continuous optimisation case study,
the partitioning of the search space into locations containing a non-empty
subset of solutions is an important tool for reducing the search trajectories
of algorithms to their essential aspects. Remember that continuous search
spaces were partitioned into discrete hypercubes of a predefined length, defin-
ing a location as a hypercube of solutions; see Section 4.4. However, due to
the different nature of a combinatorial search space, search space partition-
ing can not be done in the same way. In fact, while the partitioning in

23



a continuous search space is done independently from the generated search
trajectories, in combinatorial spaces we found it more natural to apply a
partitioning scheme that depends on the search trajectories. This scheme is
outlined in the following.

Henceforth we assume that we are given a set T of search trajectories
for the same problem instance, each one potentially produced by a different
algorithm. Furthermore, we assume that these search trajectories refer to
the original search space, that is, each one consists of a sequence of represen-
tative solutions. More precisely, each search trajectory T ∈ T is a sequence
sT1 , . . . , s

T
|T | of representative solutions. Moreover, we assume that each pos-

sible representative solution s is a string of characters s[i], i = 1, . . . , |s|.
Hereby, each position i of s can be seen as a decision variable xi with a do-
main Di and s[i] ∈ Di. In the case of the p-median problem, for example, a
solution can be represented as a binary string of length n in which a position
i (with domain Di = {0, 1}) indicates whether or not a facility is located at
demand point i. Given T , let S(T ) be the set of unique solutions contained
in all the search trajectories of T . Based on S(T ) we can calculate the prob-
ability p(xi = d) that domain value d ∈ Di appears at position i = 1, . . . , n
of a solution:

p(xi = d) =
|{s ∈ S(T ) | s[i] = d}|

|S(T )|
(2)

Intuitively, the less variability we find in the values taken by a decision vari-
able (position) in the solutions of set S(T ), the higher should be the chance
to remove this variable from the search space for the purpose of partitioning,
and vice versa. The variability in the values of a decision variable is a concept
that is formally covered by a measure from information theory called Shan-
non entropy [51]. The Shannon entropy H(xi) of a discrete random variable
xi with domain Di is formally defined as follows:

H(xi) = −
∑
d∈Di

p(xi = d) log2 p(xi = d) (3)

In particular, in the case of the lowest variability—that is, when p(xi = d) =
1 for some d ∈ Di, and p(xi = d′) = 0 for all d′ 6= d ∈ Di—the Shannon
entropy H(xi) evaluates to zero. On the contrary, in the case of the highest
variability—that is, when p(xi = d) = p(xi = d′) for all d, d′ ∈ Di—H(xi)
evaluates to one. Consequently, we make use of the Shannon entropy (calcu-
lated on the basis of S(T )) in order to produce a ranking L of all positions

24



i = 1, . . . , n. Note that the first entry in this list—that is, L[1]—contains the
position whose Shannon entropy is greater or equal to the one of all other
positions. In order to partition the search space, we reduce this list to the
first z ≤ n positions, resulting in a reduced list Lz. A location in the parti-
tioned search space, obtained on the basis of Lz, contains all those solutions
from the original search space that have the same value at all positions of Lz.
Henceforth, let the reduction of a solution s to the positions in Lz be denoted
by sz. Then, two solutions s and s′ from the original search space are mapped
into the same location of the partitioned search space induced by Lz if and
only if sz = s′z. Moreover, the objective function value f(sz) of sz—in relation
to set S(T )—is defined as follows: f(sz) := min{f(s′) | s′ ∈ S(T ), sz = s′z}.3
In other words, the objective function value of all solutions from S(T ) that
fall into the same location of the partitioned search space, is determined as
the smallest objective function value of all these solutions.

Example 1 demonstrates combinatorial search space partitioning for a p-
median problem with six demand points (n = 6) and the request to open
p = 3 facilities. Moreover, the example applies a list L for search space
partitioning of size z = 2, that is, the search space is partitioned based on
two variables with the highest Shannon entropy value.

Example 1: Combinatorial Search Space Partitioning (p-
median problem)

T1 =


sT1
1 = 101010

sT1
2 = 001011

sT1
3 = 011010

sT1
4 = 010010

 T2 =


sT2
1 = 111000

sT2
2 = 100011

sT2
3 = 011010



S(T ) = {sT1
1 , s

T1
2 , s

T1
3 , s

T1
4 , s

T2
1 , s

T2
2 }

Note that sT2
3 does not appear in S(T ) because it is equal to sT1

3 . As
we deal with solutions in terms of binary strings, for each position

3This assumes a minimisation problem. In the case of maximisation one has to replace
min by max.

25



i = 1, . . . , 6 of a solution, a binary variable xi is introduced. Based on
the strings in S(T ), the following probabilities for all domain values
{0, 1} can be calculated for each position.

Probabilities:



p(x1 = 0) = 3/6 p(x1 = 1) = 3/6

p(x2 = 0) = 3/6 p(x2 = 1) = 3/6

p(x3 = 0) = 2/6 p(x3 = 1) = 4/6

p(x4 = 0) = 1 p(x4 = 1) = 0

p(x5 = 0) = 1/6 p(x5 = 1) = 5/6

p(x6 = 0) = 4/6 p(x6 = 1) = 2/6



Shannon entropy values:



H(x1) = 1.0

H(x2) = 1.0

H(x3) = 0.918

H(x4) = 0.0

H(x5) = 0.650

H(x6) = 0.918


L = (1, 2, 6, 3, 5, 4). The order between 1 and 2, and between 3 and 6,
is randomly determined.
Lz=2 = (1, 2) (Example.: partitioning with z = 2)

Trajectories in the partitioned search space:

T1 =


sT1
1,z=2 = 10

sT1
2,z=2 = 00

sT1
3,z=2 = 01

sT1
4,z=2 = 01

 T2 =


sT2
1,z=2 = 11

sT2
2,z=2 = 10

sT2
3,z=2 = 01


Note that sT1

3 and sT1
4 , for example, are mapped to the same location

in the partitioned search space, because sT1
3,z=2 = sT1

4,z=2.

Note that an adequate value for z > 0 for the purpose of search space par-

26



70% of the total area

z=9
0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

Decision variables ordered with respect to Shannon entropy

S
h
a
n
n
o
n
 e

n
tr

o
p
y

(a) Problem instance pmed6.

70% of the total area

z=41
0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

Decision variables ordered with respect to Shannon entropy

S
h
a
n
n
o
n
 e

n
tr

o
p
y

(b) Problem instance pmed10.

Figure 5: Illustration of the way in which z-values for search space partitioning are derived
based on the Shannon entropy values. The variables are ordered on the x-axis according
to list L (from left to right). The two graphics show a 70% search space partitioning for
two different problem instances.

titioning might not be easily found. Moreover, this value might be dependent
on instance characteristics. In the context of the experimental evaluation we
decided for the following scheme. The graphics in Figure 5 contain plots of
the Shannon entropy values of the variables in the order of L, that is, from
left to right the Shannon entropy of the variables is non-increasing. As an
example, this is done for two p-median instances with different characteris-
tics: pmed6 with (n = 200, p = 5), and pmed10 (n = 200, p = 67). Both
instances have 200 demand points (resulting in 200 variables) and a very dif-
ferent number of facilities to be opened. The value of z > 0 that corresponds
to an X% search space partitioning is then determined as the largest
integer value in {1, . . . , n} such that the area below the curve from the z+ t-
th variable to the last variable in L is at least X% of the total area below
the curve. In Figure 5a a 70% search space partitioning is obtained with
z = 9 for instance pmed6 and Figure 5b) shows that the same partitioning
is obtained for pmed10 with z = 41. In other words, our scheme adapts to
instance/algorithm characteristics. In the case of pmed6, all trajectories that
were used to produce these Shannon entropy values quickly focus on a certain
area of the search space. For this reason there are many variables with very
low Shannon entropy values. This is very different in the case of the search
trajectories used for producing Figure 5b, which shows many variables with
rather high Shannon entropy values. In this second case, it would certainly
not make sense to produce a search space partitioning based on very few
variables. Finally, note that a 0% search space partitioning corresponds to

27



Table 7: Performance metrics for ACO, BRKGA, and ILS: f (average objective func-
tion value) with standard deviation (±σ) and SRate (percentage of runs finding a global
optimum.

Instance ACO BRKGA ILS

f (±σ) SRate f (±σ) SRate f (±σ) SRate

pmed6 7824.0 (±0.0) 100% 7824.0 (±0.0) 100% 7824.0 (±0.0) 100%

pmed7 5631.0 (±0.0) 100% 5657.2 (±16.88) 10% 5631.0 (±0.0) 100%

pmed8 4450.9 (±9.42) 60% 4594.4 (±42.65) 0% 4445.0 (±0.0) 100%

pmed9 2753.9 (±2.13) 0% 2856.6 (±41.94) 0% 2734.0 (±0.0) 100%

pmed10 1286.7 (±12.09) 0% 1352.2 (±23.20) 0% 1255.0 (±0.0) 100%

Table 8: Merged STN metrics for the full (f) and the partitioned (p) search space.

ntotal nbest nend nshared best-strength

f p f p f p f p f p

pmed6 280 206 1 1 0 0 17 26 1.0 1.0

pmed7 423 312 2 2 9 9 5 13 0.7 0.8

pmed8 667 370 3 3 13 12 3 14 0.53 0.6

pmed9 816 243 10 2 20 16 0 11 0.33 0.43

pmed10 868 353 10 7 20 20 0 1 0.33 0.43

not applying any search space partitioning.

5.5. Experimental Results

The experimental setup in the context of this combinatorial case study is
as follows. After implementing the three algorithms described before, each
one was applied 10 times to the five problem instances. The time limit for
each run was set to 100 CPU seconds. Table 7 provides the obtained per-
formance metrics. In particular, for each pair of a problem instance and an
algorithm the table provides the average objective function value obtained
over 10 runs (f), together with the corresponding standard deviation (±σ),
and the success rate, that is, the percentage of runs (out of 10) that ended
up in a global optimum.

28



Results and Discussion. From a global perspective it can be observed
that the problem difficulty seems to increase steadily from pmed6 (easiest) to
pmed10 (hardest). This is shown by the decreasing success rates of both ACO
and BRKGA. ILS is clearly the best-performing algorithm with a success rate
of 100% for all five instances. In addition to the performance metrics, the
values of the five metrics described in Section 3.3 were calculated on the ba-
sis of the five merged STNs (one per problem instance). The values of these
metrics can be found in Table 8. In the following we will interpret the results
based on three sources of information: the performance metrics, the STN
metrics, and visualisations of the merged STNs.

Figure 6 shows merged STNs for p-median instance pmed9, which has a
p-value of 40. This means that the Shannon entropy value distribution of
the variables obtained by the algorithm trajectories—calculated on the basis
of solution set S(T )—can be expected to resemble the one from Figure 5b.
We decided to show both the original STN—that is, without search space
partitioning—as well as the same STN for adequate and inadequate parti-
tioning percentages.4 Figure 6a displays the original STN for pmed9, while
the STN from Figure 6b results from an adequate search space partitioning
of 90%, obtained by a limitation of the search space to the z = 11 vari-
ables with the highest Shannon entropy values. The remaining two STNs
in this figure show that search space partitionings of 60%, respectively 80%,
are not sufficient yet in order to be able to interpret the STN. Note that
the graphics in Figures 6a, 6c and 6d are produced with the Kamada-Kawai
(KK) layout [33], because this layout is better for separating disconnected
components. The following can be observed:

• The original (full-size) STN (Figure 6a) does not show any overlap be-
tween the algorithm trajectories, which holds both for trajectories from
the same algorithm and for trajectories from different algorithms. This
is verified by the value of metric nshared in Table 8. In fact, the 10
ILS runs converge to 10 different optimal solutions. In contrast, the
STN visualised after a search space partitioning of 90% (see Figure 6b)
shows that all runs of ILS are attracted by the same area of the search

4Remember that in the continuous optimisation case study, the notion of an original
STN is not applicable, as STNs must necessarily be displayed in a partitioned search
space.

29



KK Layout

●

●

●

● ●● ●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●● ●

●
●
●

●

●
●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
● ●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●
●

●
●

●
● ●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

● ●●●
●

●
●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●
●

●

●●●
●

●●
●

●

●
●●

●
●

●
●

●

●
●

●
● ●●

●

●
●

●

●
●

●
●

●
●

●

●●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●● ●

●
●

● ● ● ●
●
●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●
●

●
●
●
●

● ● ● ● ●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ● ●

●
●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●
● ●

● ●
●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●
●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●
●

●

●●

●

●
●

●

●
●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(a) No search space partitioning.

FR layout

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(b) 90% search space partitioning.
KK Layout

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●
●●

● ●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●
●

● ●

●

●
●

● ● ●

● ●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
● ●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●
● ●

●

●

●

●

●●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(c) 80% search space partitioning.

KK Layout

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●
●

●

●
●● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
● ●

●
●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(d) 60% search space partitioning.

Figure 6: Merged STNs for instance pmed9.

30



space. In fact, all ILS runs end up in the same best-found location.
This is also indicated by the value 1.0 of metric best-strength for the in-
dividual ILS STN in Figure 8. Furthermore, many runs of BRKGA are
now, after search space partitioning, interconnected. The same holds
for ACO. In fact, observe the value 11 of metric nshared in Table 8, in
comparison to value zero in the case of no search space partitioning. As
a side-comment, the two larger orange and dark grey dots in the lower,
right part of the full-size STN show an oscillation or cycling behaviour
of BRKGA between two similar solutions of the same quality.

• In the upper part of Figure 6b we can see several self-cycles in the
BRKGA trajectories. Even though visiting more solutions than the
other two approaches, as indicated by the individual nodes metric for
pmed9 in Figure 8, this indicates that BRKGA quickly gets trapped
in different areas of the search space. This also indicates that the
length of a single step in the full-size search space is rather small and
that BRKGA tends to converge to solutions rather close to the initial
solutions.

• Concerning inter-algorithm overlap, the STN after search space par-
titioning (Figure 6b) shows that runs of ILS and BRKGA have some
regional overlap during early stages of the search process, while ILS
and ACO show some regional overlap in later stages of the search pro-
cess (see the largest dark-grey triangle close to the large red dot). Note
that we refer to regional overlap, because dots, squares and triangles in
Figures 6b–6d correspond to locations in the search space, rather than
to single solutions.

• The best solutions are found by ILS (see the red dots). In particu-
lar, the STN without search space partitioning shows that ILS finds a
different solution of the same quality in all 10 runs. Moreover, from
the success rate of ILS in Table 7 we know that all these solutions are
optimal. Nevertheless, the STN after search space partitioning shows
that these solutions are very similar, because 9 final solutions (the ends
of 9 ILS trajectories) are merged into only one single location of the
partitioned search space. This is also confirmed by metric nbest in
Table 8.

As second example we consider a problem instance with different char-
acteristics. Figure 7 displays four STNs for p-median instance pmed7, which

31



FR layout

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●● ● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(a) No search space partitioning.

FR layout

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

● ●

●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(b) 60% search space partitioning.
FR layout

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●

●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
● ●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(c) 50% search space partitioning.

KK Layout

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●
●
●

Start
End
Best
ACO
BRKGA
ILS
Shared

(d) 80% search space partitioning.

Figure 7: STNs for instance pmed7.

32



has a p-value of 10. The distribution of the Shannon entropy values of the
variables can therefore be expected to resemble the one from Figure 5a. The
STN in Figure 7a is the original STN, the one in Figure 7b is obtained after
a search space partitioning of 60%, while the remaining two are obtained
after search space partitioning of 50% (too few) and 80% (too much), respec-
tively. Table 7 shows that both ACO and ILS have a success rate of 100%
for this problem instance. Moreover, one run of BRKGA (success rate of
10%) converges to an optimal solution. Metric nbest from Table 8 indicates
that alltogether two different optimal solutions are found. Moreover, value
9 of metric nend indicates that all the 9 BRKGA runs that do not find an
optimal solution converge to different solutions. One of them gets actually
stuck in the large dark-grey rectangle through which 9 out of 10 ILS runs
pass in order to reach an optimal solution. Note that the adequate search
space partitioning of 60% results in a reduction from an initial number of 200
variables to the z = 19 variables with the highest Shannon entropy values.
The following can be observed when comparing the STN graphics between
each other and also when contrasting them with the two graphics obtained
for problem instance pmed9:

• First of all, the STN without search space partitioning already shows
some overlap between the trajectories of different algorithms, as indi-
cated by the light grey dots and the dark-grey triagle close to the two
red dots. This observation is confirmed by the value 5 of metric nshared
in Table 8.

• In comparison to the results obtained for instance pmed7, BRKGA
seems to work better for instance pmed9. There is one BRKGA trajec-
tory that reaches one of the two optimal solutions (red dots).

• Interestingly, the solutions to which the 30 algorithm runs converge
are so different from each other that they are still mapped to different
locations in the partitioned search space. This is indicated by the
values of metrics nbest and nend in Table 8. In particular, the values
do not change from the original STN to the STN after search space
partitioning.

• As already mentioned above, the algorithms found two optimal solu-
tions (red dots). Interestingly, the STN when displayed in the parti-
tioned search space (Figure 6b) shows that the left one of the two is

33



0

100

200

300

400

pmed6 pmed7 pmed8 pmed9 pmed10

no
de

s

0.00

0.25

0.50

0.75

1.00

pmed6 pmed7 pmed8 pmed9 pmed10

be
st

−
st

re
ng

th

Algorithm ACO BRKGA ILS

Figure 8: Algorithm specific STN metrics for the p-median instances. A description of the
metrics is found in Table 1.

mostly found by the ACO runs, while the other one is mostly found
by the ILS runs. In other words, the two algorithms are attracted to
different optimal solutions of the same quality.

• The STN when shown in the partitioned search space (Figure 7b)
shows regional overlap especially between the BRKGA and the ILS
runs. However, it becomes clear that BRKGA, most of the time, con-
verges before reaching solutions of the highest quality. In partiuclar,
there is one BRKGA run that converges to the large dark-grey triangle
close to the optimal solutions that is an attractor for the ILS runs.

6. Conclusion

We proposed search trajectory networks (STNs), a network-based model
to characterise and visualise the search behaviour of metaheuristics. We
showed that STNs can be applied to algorithms from the main metaheuris-
tic paradigms: stochastic local search, evolutionary algorithms and swarm
intelligence, and to both continuous and combinatorial optimisation. We ar-
gue, therefore, that STNs can be applied to analyse any metaheuristc and
problem domain. One strength of our approach is that it does not require ad-
ditional methods for sampling the search process, instead, the data to build
the network models is collected from a number of runs of the algorithms un-
der study. Our analysis illustrates that the qualitative (visualisations) and

34



quantitative (network metrics) analysis of STNs give interesting insight into
the convergence behaviour of algorithms and their performance differences.
STNs allow us to observe and quantify which portions of the search space
attract the process and thus act as traps in the way of locating the best so-
lution. We can also identify frequently traversed areas of the search space by
a given algorithm or set of algorithms, as well as the existence of cycling (os-
cillating) behaviour. We argue that this information gives new insights into
understanding the dynamics of metaheuristics, and thus can be used to im-
prove their design and to inform the selection of the most suitable algorithm
for a given problem. By providing the source code for constructing, visualis-
ing and analysing the network models, we hope to provide an accessible new
tool for the analysis and comparison of metaheuristic algorithms.

Future work will analyse real-world optimisation problems as well as sce-
narios where significant performance differences among algorithms are known
to exist but are not well understood. We will also study the impact on the
trajectories of considering alternative search operators, as well as the rela-
tionship between the search trajectories and the fitness landscape structure
of the underlying optimisation problem. We argue that our proposed ap-
proach will shed new light into these scenarios, which will have implications
for algorithm selection and understanding search difficulty.

Acknowledgements

Christian Blum was funded by project CI-SUSTAIN of the Spanish Min-
istry of Science and Innovation (PID2019-104156GB-I00). Katherine Malan
was funded by the National Research Foundation of South Africa (Grant
Number: 120837).

References

[1] K. Sörensen, Metaheuristics-the metaphor exposed, International Trans-
actions in Operational Research 22 (2013) 3–18.

[2] P. Calégari, G. Coray, A. Hertz, D. Kobler, P. Kuonen, A taxonomy
of evolutionary algorithms in combinatorial optimization, Journal of
Heuristics 5 (1999) 145–158.

[3] M. A. Lones, Mitigating metaphors: A comprehensible guide to recent
nature-inspired algorithms, SN Computer Science 1 (2019).

35



[4] C. Blum, A. Roli, Metaheuristics in combinatorial optimization, ACM
Computing Surveys 35 (2003) 268–308.

[5] A. E. Eiben, C. A. Schippers, On evolutionary exploration and exploita-
tion, Fundamenta Informaticae 35 (1998) 35–50.

[6] T. D. Collins, Applying software visualization technology to support the
use of evolutionary algorithms, Journal of Visual Languages & Com-
puting 14 (2003) 123–150.

[7] H. Pohlheim, Multidimensional scaling for evolutionary algorithms –
visualization of the path through search space and solution space using
Sammon mapping, Artificial Life 12 (2006) 203–209.

[8] K. Michalak, Low-dimensional euclidean embedding for visualization
of search spaces in combinatorial optimization, IEEE Transactions on
Evolutionary Computation 23 (2019) 232–246.

[9] A. D. Lorenzo, E. Medvet, T. Tušar, A. Bartoli, An analysis of dimen-
sionality reduction techniques for visualizing evolution, in: Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
ACM, 2019.

[10] M. E. J. Newman, The structure and function of complex networks,
SIAM Review 45 (2003) 167256.

[11] M. E. J. Newman, Networks: an introduction, Oxford University Press,
Oxford; New York, 2010.

[12] G. Ochoa, K. M. Malan, C. Blum, Search trajectory networks of
population-based algorithms in continuous spaces, in: Applications
of Evolutionary Computation - 23rd European Conference, EvoAp-
plications 2020, volume 12104 of Lecture Notes in Computer Science,
Springer, 2020, pp. 70–85.

[13] G. Ochoa, M. Tomassini, S. Verel, C. Darabos, A study of nk land-
scapes’ basins and local optima networks, in: Genetic and Evolutionary
Computation Conference, GECCO, ACM, 2008, pp. 555–562.

[14] S. Verel, G. Ochoa, M. Tomassini, Local optima networks of NK land-
scapes with neutrality, IEEE Transactions on Evolutionary Computa-
tion 15 (2011) 783–797.

36



[15] J. P. K. Doye, The network topology of a potential energy landscape: a
static scale-free network, Physical Review Letter 88 (2002) 238701.

[16] O. M. Becker, M. Karplus, The topology of multidimensional poten-
tial energy surfaces: Theory and application to peptide structure and
kinetics, The Journal of chemical physics 106 (1997) 1495.

[17] J. P. K. Doye, M. A. Miller, D. J. Wales, The double-funnel energy
landscape of the 38-atom Lennard-Jones cluster, Journal of Chemical
Physics 110 (1999) 6896–6906.

[18] C. Flamm, I. L. Hofacker, P. F. Stadler, M. T. Wolfinger, Barrier Trees
of Degenerate Landscapes, Phys. Chem. 216 (2002) 155–173.

[19] J. Hallam, A. Prugel-Bennett, Large barrier trees for studying search,
IEEE Transactions on Evolutionary Computation 9 (2005) 385–397.

[20] I. Zelinka, D. Davendra, Investigation on relations between complex
networks and evolutionary algorithm dynamics, International Journal
of Computer Information Systems and Industrial Management Applica-
tions 3 (2011) 236–247.

[21] P. Gajdo, P. Kromer, I. Zelinka, Network visualization of population
dynamics in the differential evolution, in: IEEE Symposium Series on
Computational Intelligence, pp. 1522–1528.

[22] L. Skanderová, T. Fabian, I. Zelinka, Small-world hidden in differential
evolution, in: IEEE Congress on Evolutionary Computation, CEC, pp.
3354–3361.

[23] M. Oliveira, C. J. A. Bastos-Filho, R. Menezes, Towards a network-
based approach to analyze particle swarm optimizers, in: 2014 IEEE
Symposium on Swarm Intelligence, IEEE, 2014.

[24] L. Taw, N. Gurrapadi, M. Macedo, M. Oliveira, D. Pinheiro, C. Bastos-
Filho, R. Menezes, Characterizing the social interactions in the artificial
bee colony algorithm, in: 2019 IEEE Congress on Evolutionary Com-
putation (CEC), IEEE, 2019.

[25] P. Bosman, A. P. Engelbrecht, Diversity rate of change measurement for
particle swarm optimisers, in: Swarm Intelligence (ANTS 2014), volume
8667 of LNCS, Springer International Publishing, 2014, pp. 86–97.

37



[26] O. Olorunda, A. P. Engelbrecht, Measuring exploration/exploitation
in particle swarms using swarm diversity, in: 2008 IEEE Congress on
Evolutionary Computation (IEEE World Congress on Computational
Intelligence), IEEE, 2008.

[27] T. Tusar, B. Filipic, Visualization of pareto front approximations in
evolutionary multiobjective optimization: A critical review and the pro-
section method, IEEE Transactions on Evolutionary Computation 19
(2015) 225–245.

[28] J. E. Fieldsend, T. Chugh, R. Allmendinger, K. Miettinen, A feature rich
distance-based many-objective visualisable test problem generator, in:
Proceedings of the Genetic and Evolutionary Computation Conference,
ACM, 2019.

[29] S. Herrmann, G. Ochoa, F. Rothlauf, Pagerank centrality for perfor-
mance prediction: the impact of the local optima network model, J.
Heuristics 24 (2018) 243–264.

[30] G. Ochoa, N. Veerapen, Mapping the global structure of TSP fitness
landscapes, J. Heuristics 24 (2018) 265–294.

[31] G. Csardi, T. Nepusz, The igraph software package for complex network
research, InterJournal Complex Systems (2006) 1695.

[32] T. M. J. Fruchterman, E. M. Reingold, Graph drawing by force-directed
placement, Softw. Pract. Exper. 21 (1991) 1129–1164.

[33] T. Kamada, S. Kawai, An algorithm for drawing general undirected
graphs, Information Processing Letters 31 (1989) 7 – 15.

[34] A. M. Sutton, D. Whitley, M. Lunacek, A. Howe, PSO and multi-funnel
landscapes: how cooperation might limit exploration, in: Proceedings
of the 8th Annual Genetic and Evolutionary Computation Conference,
pp. 75–82.

[35] H. Ramalhinho Lourenço, O. C. Martin, T. Stützle, Iterated Local
Search: Framework and Applications, Springer International Publish-
ing, pp. 129–168.

38



[36] K. V. Price, R. M. Storn, J. A. Lampinen, Appendix A.1: Unconstrained
Uni-Modal Test Functions, in: Differential Evolution A Practical Ap-
proach to Global Optimization, Natural Computing Series, Springer-
Verlag, Berlin, Germany, 2005, pp. 514–533.

[37] X. Yao, Y. Liu, G. Lin, Evolutionary Programming Made Faster, IEEE
Transactions on Evolutionary Computation 3 (1999) 82–102.

[38] S. K. Mishra, Performance of Repulsive Particle Swarm Method in
Global Optimization of Some Important Test Functions: A Fortran Pro-
gram, Technical Report, Social Science Research Network (SSRN), 2006.

[39] R. Eberhart, J. Kennedy, A New Optimizer using Particle Swarm The-
ory, in: Proceedings of the Sixth International Symposium on Micro-
machine and Human Science, pp. 39–43.

[40] J. Kennedy, R. Eberhart, Particle Swarm Optimization, in: Proceedings
of the IEEE International Joint Conference on Neural Networks, pp.
1942–1948.

[41] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceed-
ings of the 1998 IEEE World Congress on Computational Intelligence,
pp. 69–73.

[42] R. Eberhart, Y. Shi, Comparing Inertia Weights and Constriction Fac-
tors in Particle Swarm Optimization, in: Proceedings of the IEEE
Congress on Evolutionary Computation, volume 1, pp. 84–88.

[43] R. Storn, K. Price, Minimizing the real functions of the ICEC’96 contest
by differential evolution, in: Proceedings of the International Conference
on Evolutionary Computation, p. 842844.

[44] D. J. Wales, J. P. K. Doye, Global optimization by basin-hopping and
the lowest energy structures of lennard-jones clusters containing up to
110 atoms, The Journal of Physical Chemistry A 101 (1997) 5111–5116.

[45] D. Liu, J. Nocedal, On the limited memory bfgs method for large scale
optimization, Mathematical Programming 45 (1989) 503–528.

[46] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific
tools for Python, 2001–.

39



[47] M. T. Melo, S. Nickel, F. Saldanha-Da-Gama, Facility location and
supply chain management–a review, European journal of operational
research 196 (2009) 401–412.

[48] C. Blum, M. Dorigo, The hyper-cube framework for ant colony op-
timization, IEEE Trans. Systems, Man, and Cybernetics, Part B 34
(2004) 1161–1172.

[49] J. F. Gonçalves, M. G. C. Resende, Biased random-key genetic algo-
rithms for combinatorial optimization, Journal of Heuristics 17 (2011)
487–525.

[50] P. Hansen, N. Mladenović, J. Brimberg, J. A. Moreno Pérez, Variable
neighborhood search, Springer International Publishing, pp. 57–97.

[51] C. E. Shannon, A mathematical theory of communication, Bell System
Technical Journal 27 (1948) 379–423.

40


	Introduction
	Related Work
	Search Trajectory Networks (STNs)
	Definitions
	Sampling and Model Construction
	Network Metrics
	Network Visualisation
	Illustrative Example

	Continuous Optimisation Case Study
	Problem Formulation
	Benchmark Instances
	Metaheuristic Algorithms
	Search Space Partitioning
	Experimental Results

	Combinatorial Optimisation Case Study
	Problem Formulation
	Benchmark Instances
	Metaheuristic Algorithms
	Search Space Partitioning
	Experimental Results

	Conclusion

