Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32020
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorBath, Mandyen_UK
dc.contributor.editorMerelo, Juan Julianen_UK
dc.contributor.editorGaribaldi, Jonathanen_UK
dc.contributor.editorWagner, Christianen_UK
dc.contributor.editorBäck, Thomasen_UK
dc.contributor.editorMadani, Kuroshen_UK
dc.contributor.editorWarwick, Kevinen_UK
dc.date.accessioned2020-11-28T01:15:04Z-
dc.date.available2020-11-28T01:15:04Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32020-
dc.description.abstractThis paper shows how a standard convolutional neural network (CNN) without recurrent connections is able to learn general spatial relationships between different objects in an image. A dataset was constructed by placing objects from the Fashion-MNIST dataset onto a larger canvas in various relational locations (for example, trousers left of a shirt, both above a bag). CNNs were trained to name the objects and their spatial relationship. Models were trained to perform two different types of task. The first was to name the objects and their relationships and the second was to answer relational questions such as ``Where is the shoe in relation to the bag?". The models performed at above 80\% accuracy on test data. The models were also capable of generalising to spatial combinations that had been intentionally excluded from the training data.en_UK
dc.language.isoenen_UK
dc.publisherSCITEPRESS - Science and Technology Publicationsen_UK
dc.relationSwingler K & Bath M (2020) Learning Spatial Relations with a Standard Convolutional Neural Network. In: Merelo JJ, Garibaldi J, Wagner C, Bäck T, Madani K & Warwick K (eds.) Proceedings of the 12th International Joint Conference on Computational Intelligence - Volume 1: NCTA. 12th International Conference on Neural Computation Theory and Applications, Budapest, Hungary, 02.11.2020-04.11.2020. Setubal, Portugal: SCITEPRESS - Science and Technology Publications, pp. 464-470. https://doi.org/10.5220/0010170204640470en_UK
dc.rightsThis article is published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 licence (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectConvolutional Neural Networksen_UK
dc.subjectSpatial Reasoningen_UK
dc.subjectComputer Visionen_UK
dc.titleLearning Spatial Relations with a Standard Convolutional Neural Networken_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.5220/0010170204640470en_UK
dc.citation.spage464en_UK
dc.citation.epage470en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.btitleProceedings of the 12th International Joint Conference on Computational Intelligence - Volume 1: NCTAen_UK
dc.citation.conferencedates2020-11-02 - 2020-11-04en_UK
dc.citation.conferencelocationBudapest, Hungaryen_UK
dc.citation.conferencename12th International Conference on Neural Computation Theory and Applicationsen_UK
dc.citation.date16/11/2020en_UK
dc.citation.isbn9789897584756en_UK
dc.publisher.addressSetubal, Portugalen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid1682227en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.date.accepted2020-09-18en_UK
dcterms.dateAccepted2020-09-18en_UK
dc.date.filedepositdate2020-11-27en_UK
dc.subject.tagComputational Intelligence and Machine Learningen_UK
rioxxterms.apcnot chargeden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorBath, Mandy|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorMerelo, Juan Julian|en_UK
local.rioxx.contributorGaribaldi, Jonathan|en_UK
local.rioxx.contributorWagner, Christian|en_UK
local.rioxx.contributorBäck, Thomas|en_UK
local.rioxx.contributorMadani, Kurosh|en_UK
local.rioxx.contributorWarwick, Kevin|en_UK
local.rioxx.freetoreaddate2020-11-27en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2020-11-27|en_UK
local.rioxx.filenameNCTA_2020_23.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9789897584756en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
NCTA_2020_23.pdfFulltext - Published Version387.35 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.