Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31768
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorChicano, Franciscoen_UK
dc.contributor.authorTomassini, Marcoen_UK
dc.contributor.editorBäck, Thomasen_UK
dc.contributor.editorPreuss, Mikeen_UK
dc.contributor.editorDeutz, Andréen_UK
dc.contributor.editorWang, Haoen_UK
dc.contributor.editorDoerr, Carolaen_UK
dc.contributor.editorEmmerich, Michaelen_UK
dc.contributor.editorTrautmann, Heikeen_UK
dc.date.accessioned2020-10-01T00:03:31Z-
dc.date.available2020-10-01T00:03:31Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31768-
dc.description.abstractWe revisit the fitness landscape structure of random MAX-SAT instances, and address the question: what structural features change when we go from easy underconstrained instances to hard overconstrained ones? Some standard techniques such as autocorrelation analysis fail to explain what makes instances hard to solve for stochastic local search algorithms, indicating that deeper landscape features are required to explain the observed performance differences. We address this question by means of local optima network (LON) analysis and visualisation. Our results reveal that the number, size, and, most importantly, the connectivity pattern of local and global optima change significantly over the easy-hard transition. Our empirical results suggests that the landscape of hard MAX-SAT instances may feature sub-optimal funnels, that is, clusters of sub-optimal solutions where stochastic local search methods can get trapped.en_UK
dc.language.isoenen_UK
dc.publisherSpringer International Publishingen_UK
dc.relationOchoa G, Chicano F & Tomassini M (2020) Global Landscape Structure and the Random MAX-SAT Phase Transition. In: Bäck T, Preuss M, Deutz A, Wang H, Doerr C, Emmerich M & Trautmann H (eds.) Parallel Problem Solving from Nature. Lecture Notes in Computer Science. PPSN 2020: Conference on Parallel Problem Solving from Nature, Leiden, The Netherlands, 05.09.2020-09.09.2020. Cham, Switzerland: Springer International Publishing, pp. 125-138. https://doi.org/10.1007/978-3-030-58115-2_9en_UK
dc.relation.ispartofseriesLecture Notes in Computer Scienceen_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Bäck T, Preuss M, Deutz A, Wang H, Doerr C, Emmerich M & Trautmann H (eds.) Parallel Problem Solving from Nature. Lecture Notes in Computer Science. PPSN 2020: Conference on Parallel Problem Solving from Nature, Leiden, The Netherlands, 05.09.2020-09.09.2020. Cham, Switzerland: Springer International Publishing, pp. 125-138 The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-58115-2_9en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.titleGlobal Landscape Structure and the Random MAX-SAT Phase Transitionen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-58115-2_9en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage125en_UK
dc.citation.epage138en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.citation.btitleParallel Problem Solving from Natureen_UK
dc.citation.conferencedates2020-09-05 - 2020-09-09en_UK
dc.citation.conferencelocationLeiden, The Netherlandsen_UK
dc.citation.conferencenamePPSN 2020: Conference on Parallel Problem Solving from Natureen_UK
dc.citation.date02/09/2020en_UK
dc.citation.isbn9783030581145en_UK
dc.citation.isbn9783030581152en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Malagaen_UK
dc.contributor.affiliationUniversity of Lausanneen_UK
dc.identifier.scopusid2-s2.0-85091140223en_UK
dc.identifier.wtid1666854en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2020-05-28en_UK
dcterms.dateAccepted2020-05-28en_UK
dc.date.filedepositdate2020-09-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorChicano, Francisco|en_UK
local.rioxx.authorTomassini, Marco|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorBäck, Thomas|en_UK
local.rioxx.contributorPreuss, Mike|en_UK
local.rioxx.contributorDeutz, André|en_UK
local.rioxx.contributorWang, Hao|en_UK
local.rioxx.contributorDoerr, Carola|en_UK
local.rioxx.contributorEmmerich, Michael|en_UK
local.rioxx.contributorTrautmann, Heike|en_UK
local.rioxx.freetoreaddate2020-09-30en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2020-09-30|en_UK
local.rioxx.filenameLONs_MAX_SAT_Phase_Transitions.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9783030581152en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
LONs_MAX_SAT_Phase_Transitions.pdfFulltext - Accepted Version842.78 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.