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Abstract. We revisit the fitness landscape structure of random MAX-
SAT instances, and address the question:what structural features change
when we go from easy underconstrained instances to hard overconstrained
ones? Some standard techniques such as autocorrelation analysis fail to
explain what makes instances hard to solve for stochastic local search
algorithms, indicating that deeper landscape features are required to ex-
plain the observed performance differences. We address this question by
means of local optima network (LON) analysis and visualisation. Our
results reveal that the number, size, and, most importantly, the connec-
tivity pattern of local and global optima change significantly over the
easy-hard transition. Our empirical results suggests that the landscape
of hard MAX-SAT instances may feature sub-optimal funnels, that is,
clusters of sub-optimal solutions where stochastic local search methods
can get trapped.

1 Introduction

Understanding when a specific class of problems go from being computationally
easy to hard, remains a fundamental question. It is well-known that random
instances of satisfiability problems exhibit a dramatic easy-to-hard phase transi-
tion with respect to the problem constrainedness [1,2,3]. Some standard fitness
landscape analysis techniques such as the correlation structure fall short in ex-
plaining the performance differences of local search algorithms when solving easy
and hard instances [4]. Studies of the configuration landscape of a set of local
optima show that there exist big-valley structures (also called clusters) in the
landscapes of 3-SAT and MAX-3SAT [5], and studies of the size and character-
istics of local optima and plateaus [6] do offer interesting insight and help to
explain performance differences. These studies, however, do not convey a view
of the connectivity structure of local optima in MAX-SAT, as seen by stochastic
local search algorithms.

Our motivating research question is: what fitness landscape features change
when we go from easy underconstrained instances to hard overconstrained ones?
Another motivation for our study is the lack of tools for visualising high-dimensional
fitness landscapes, specially in the presence of high levels of neutrality as is
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known to be the case for MAX-SAT. Neutrality is present in a landscape when
neighbouring points have equal fitness values. A discrete landscape is regarded
as neutral if a substantial fraction of adjacent pairs of solutions are neutral [7].

We conduct a detailed experimental investigation of the phase transition from
underconstrained to overconstrained randomly generated instances of MAX-
3SAT problems. We explore this phenomenon by means of local optima networks
(LONs) [8,9] analysis and visualisation. In particular, we use the compressed
LON model (CLON) [10], which allows us to deal with the high levels of neu-
trality observed in MAX-SAT. Our contribution is to offer a new set of fitness
landscape features and visualisation tools reflecting the number, size, and, most
importantly, the connectivity pattern of optima, which capture and help to ex-
plain why the computational effort of stochastic local search methods increases
dramatically in the phase transition region and beyond.

2 SAT, MAX-SAT and the Phase Transition

The propositional satisfiability problem (SAT) is a prominent combinatorial de-
cision problem with a central role in several areas of computer science. Given a
Boolean formula, SAT checks if there is an assignment of variables to Boolean
values such that the formula is satisfiable. The Boolean formula is commonly
expressed as a conjunction of clauses (Conjunctive Normal Form). A clause is a
list of literals (a Boolean variable or its negation) that is satisfied if at least one
literal is true. The Boolean formula is satisfiable if all the clauses are true. MAX-
SAT is the optimisation version of SAT, where the goal is to find an assignment
that maximises the number of satisfied clauses.

It is well known [1,2,3] that random instances of the kSAT problem display
a computational phase transition for a certain critical value αc of the ratio
α = m/n between the number of clauses m and the number of variables n.
For fixed integers k and n, the probability that a randomly generated formula
is satisfiable is a decreasing function of α. For α → 0 the probability that the
formula is satisfiable goes to 1; it goes to 0 for α→∞. Thus, a random formula
is satisfiable for α < αc and it is unsatisfiable for α > αc, with probability
approaching 1 as n → ∞. The crossover from high to low probability becomes
sharper as n increases and there is a transition at a finite value of αc which, for
3SAT, is αc ≈ 4.3. For a given n, at low α the problems are easy but in the phase
transition region they become hard and the computational effort has a peak at
the SAT/UNSAT boundary.

Zhang [11] investigated the relationship between the phase transitions of 3-
SAT and MAX-3SAT, and found a near linear correlation between these two
phase transitions. The computational cost of MAX-3SAT envelops the compu-
tational cost peaks of 3-SAT. It is worth noticing that in decision problems
there is an easy-hard-easy phase transition, while in optimisation problems the
transition is easy-hard. That is, the computational cost remains high after the
transition.



3 Local Optima Networks

The local optima network (LON) model [8] is a tool to capture the global struc-
ture of fitness landscape as seen by stochastic local search algorithms. In this
paper, we use a coarse variant of LONs, the compressed LONs (CLONs) [10],
which helps us to model the structure of landscapes with high amounts of neu-
trality. We describe below the LON model, before introducing the compressed
model (CLON).

3.1 LON Model

A fitness landscape [12] is a triplet (S,N, f) where S is a set of potential solutions
i.e., a search space, N : S −→ 2S , is a neighbourhood structure, a function that
assigns a set of neighbours N(s) to every solution s ∈ S, and f : S −→ R is a
fitness function that can be pictured as the height of the corresponding solutions.

In our study, the search space is {0, 1}n, i.e., the space of binary strings of
length n, so its size is 2n. As neighbourhood, we consider the standard Ham-
ming distance 1 neighbourhood, that is, the set of all solutions at a maximum
Hamming distance of 1 from the current solution.

Local optima. A local optimum, which in MAX-SAT is a maximum, is a
solution l such that ∀s ∈ N(l), f(l) ≥ f(s). Notice that the inequality is not
strict, in order to allow the treatment of neutrality (local optima of equal fitness),
which is known to widely occur on MAX-SAT. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L.

Perturbation edges. Edges are directed and based on the perturbation opera-
tor (p bit flips). There is an edge from local optimum l1 to local optimum l2, if l2
can be obtained after applying a random perturbation (p bit flips) to l1 followed
by hill climbing. Edges are weighted with estimated frequencies of transition. We
determined the edge weights in a sampling process. The weight is the number
of times a transition between two local optima occurred. The set of edges is
denoted by E.

LON. Is the directed and weighted graph LON = (L,E), where nodes are the
local optima L, and edges the perturbation edges E.

3.2 Compressed LON Model

When the number of local optima is high in a LON it is difficult to visualise
the structure of the landscape. A natural way of reducing the model size in
landscapes with high-levels of neutrality is to redefine the nodes of the model.
The compressed LON model joins the local optima that are connected and have
the same fitness value.



Compressed local optima. A compressed local optimum is a set of connected
nodes (a connected component) in the LON with the same fitness value. This
set of compressed optima, denoted by CL, corresponds to the set of nodes in the
Compressed LON model.

Compressed Perturbation edges. The set of perturbation edges is defined
as above for the LON model. However, after compression, there are no edges
between nodes with the same fitness, as connected components with the same
fitness become a single node. The set of edges among compressed nodes are also
aggregated and their weights summed. We call this set compressed edges, CE.

Compressed LON. Is the directed graph CLON = (CL,CE), where nodes are
the compressed local optima CL and edges the compressed perturbation edge
set CE.

4 Methodology

4.1 Benchmark Instances

For the computational experiments, we used unweighted MAX3-SAT instances
from the well-studied Uniform Random 3-SAT distribution [2]. Our instances
have a relatively low number n = 50 of variables to allow us to compute the
global optimum in all of them. Instances with n = 50 are not a challenge for
state-of-the-art MAX-SAT solvers. However, n = 50 is large enough to well cap-
ture the performance transition region [2,3], thus suitable for our study. Our
goal is to gain a deeper understanding of the fitness landscape structure. Since
we are interested in studying instances around the phase transition, we gener-
ated random instances with α ∈ [3.0, 5.0] in steps of 0.2. For each value of α we
generated 10 instances with different random seeds. The source code of the in-
stance generator and the instructions to replicate the experiments are available
at: https://github.com/jfrchicanog/EfficientHillClimbers.

4.2 Sampling and Construction of the Network Models

To construct the network models for a given instance, we aggregate the
(unique) local optima and transition edges obtained by 20 runs of a fast iter-
ated local search (ILS) algorithm [13] that incorporates Grey-Box optimisation
techniques [14]. An outline can be found in Algorithm 1. Iterated local search
is a simple yet powerful metaheuristic that combines two steps: one for reach-
ing local optima efficiently, and the other for escaping local optima (known as
the perturbation step). The stopping condition was set as a fixed running time
(60 s). Weights are added to edges indicating the number of times they appear
in the sampling process. In our ILS implementation, the perturbation step flips
10% of the variables selected at random (which corresponds to 5 bit flips for
n = 50). The local search operator is a first improvement local search applied

https://github.com/jfrchicanog/EfficientHillClimbers


Algorithm 1 Iterated Local Search

1: x← generateRandomSolution();
2: x← applyLocalSearch(x);
3: while not stopping condition do
4: y ← perturb (x);
5: y ← applyLocalSearch(y);
6: reportEdge(x,y);
7: if f(y) > f(x) then
8: x← y;
9: end if

10: end while
11: return x;

in the 1-flip neighbourhood. That is, if a flip in one bit of the current solution
increases the number of satisfied clauses, the current solution is replaced by the
new one. The local search is applied until a local optimum is reached (no neigh-
bour can increase the number of satisfied clauses). A new local optimum is only
accepted in Line 7 if it improves the incumbent solution. However, we report all
the edges encountered between local optima in Line 6, which includes neutral
and worsening edges. All the local optima (and edges) visited after finding the
global optimum are removed from the LON. The reason is that they would bias
the metrics, since they generate only worsening edges and they do no not provide
additional information on the difficulty of the search process.

4.3 Determining the Global Optimum

For all the instances, we computed the global optimum using exact methods.
Instead of using an exhaustive enumeration (which could take a long time) we
used minisat4 to prove that there is no better solution than the one provided
by ILS. The approach to prove optimality changes depending on the solution
provided by ILS:

– If ILS finds an assignment satisfying all the clauses, the formula is satisfiable
and the global optimum is found.

– If the optimal assignment found by ILS leaves one single clause unsatisfied,
we apply minisat to check if the formula is satisfiable. If it is unsatisfiable,
then the global optimum was found by ILS, otherwise (formula satisfiable)
ILS didn’t find a global optimum.

– If the optimal assignment found by ILS leaves u clauses unsatisfied, then
we generate all the MAX-3SAT instances derived from the original instance
where exactly u − 1 different clauses are removed and apply minisat to all
of them. If minisat finds all of them unsatisfiable, then ILS found the global
optimum. If minisat finds at least one of them satisfiable, then a better
assignment can be found with u−1 unsatisfied clauses at most, which means
that ILS didn’t find the global optimum.

4 http://minisat.se

http://minisat.se


The previous procedure to figure out the global optimum can be costly when
the number of unsatisfied clauses in the optimal assignment is high. We expected
this to happen when α is high. However, in the range of values of α used in the
experiments the maximum number of unsatisfied clauses was 2, which made it
possible to apply minisat in the way described above to certify that the global
optimum was reached.

5 Results

5.1 Performance and Network Metrics

Our aim is to identify fitness landscape features that correlate with and help to
explain the search difficulty of stochastic search algorithms. In order to measure
search difficulty, we selected WalkSAT, a well-known local search algorithm for
SAT and MAX-SAT [15]. WalkSAT has a wide influence among modern local
search algorithms and is known to be very efficient in solving random 3-SAT and
MAX-3SAT instances. We ran WalkSAT 10 000 times per instance and counted
the number of bit flips (steps) it needs to find a global optimum. We have 10
instances per α value, thus a total of 100 000 measures per α. The distribution of
this metric is shown in Fig. 1 (steps) with log scale, indicating a large variability,
but a clear exponential increase in the search cost with increasing α.

Table 1: Description of Metrics.

Performance Metric

steps Number of bit flips (steps) by WalkSAT before reaching the
global optimum.

LON Metrics

nodes Number of nodes (local and global optima).
global Proportion of nodes that are global optima.
edgese Proportion of edges between nodes with equal fitness.

CLON Metrics

cnodes Number of compressed nodes.
subopt-size Size of the largest suboptimal compressed node.
path-length Average length of the shortest paths from start nodes to the

global optimum.
cedgesw Proportion of edges to compressed nodes with worse fitness.

For each of the 10 instances per α value, we extracted the LON and CLON
models and computed the measurements described in Table 1. Network metrics
are shown as the distribution of values over the 10 generated instances (Figs. 1
and 2); a large variability is observed across the 10 instances, meaning that



different instances will have different structure and performance, this is known
to be the case for randomly generated instances. Results are shown as box-plots
with instances grouped by the value of α in order to analyse the variation in the
metrics as the value of α changes.
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Fig. 1: Distribution of the LON metrics and the performance metric, as described
in Table 1, for all values of alpha.

As Figure 1 indicates, the number of nodes (unique local and global optima)
visited decreases exponentially with increasing α. For low values of α, over one
million nodes are visited. This number drops to a few thousands and even several
hundreds for high values of α. The proportion of global optima (global in Fig. 1)
reveals that for α < 4.0, the vast majority of nodes (above 75%) are global
optima, and this proportion drastically decreases for larger values of α. This
is a known result [1]; in the underconstrained region instances are satisfiable
and the density of solutions is high, thus making it relatively easy to find a
global optimum. For high values of α, instances are overconstrained, making it
unlikely to find a solution (when the formula is satisfiable), or an assignment
with the maximum possible number of true clauses (for unsatisfiable formulas).
Our network analysis complements this finding by revealing that most of the
search transitions in the underconstrained region are among candidate solutions



with equal fitness (traversing plateaus). This is revealed by the high proportion
of equal edges (edgese in Fig. 1), which is almost 100% for α < 4.0. Our network
models capture search transitions that are either improving, deteriorating or
neutral. The proportion of deteriorating transitions also correlates with search
difficulty as is revealed by our analysis of the compressed LONs (Fig. 2).
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Fig. 2: Distribution of the CLON metrics, as described in Table 1, for all values
of alpha.

Figure 2 shows the metrics distribution for the compressed LON models.
Compressed nodes aggregate connected local optima with the same fitness. The
number of compressed nodes (cnodes in Fig. 2) shows an opposite tendency than
the number of nodes (nodes in Fig. 1), that is, the number of compressed nodes
increases exponentially with increasing α. This is related to the proportion of
equal edges in the LON model (edgese in Fig. 1); if there are many equal edges,
there will be many local optima per compressed node, reducing their number
while increasing their size. This means that, for low α values, CLONs will have
a few nodes, indicating an easy to traverse fitness landscape. We can expect in
this case a big node in the CLON capturing all the global optima, this is what
our network visualisations reveal (Figs. 3a, and 3b). The average path lengths
towards the global optimum are also correlated with search difficulty (path-length



in Fig. 2); shorter paths (of 1 to 4 hops) are observed in the underconstrained
region. The size of the largest sub-optimal compressed node (subopt-size in Fig. 2)
increases exponentially with increasing α, which helps to explain the increased
search cost in the overconstrained region, search processes spend time traversing
sub-optimal plateaus. The CLON models only have improving and deteriorating
edges, as the neutral edges are collapsed in the compressed nodes. When looking
at the proportion of worsening edges (edgesw in Fig. 2), we can observe that
it increases noticeably in the overconstrained region; for α > 4.0, over 80% of
the search transitions are deteriorating, indicating that search processes spend a
long time finding exits from sub-optimal compressed nodes. These observations
are supported by our network visualisations (Figs. 3c - 3f), where larger sub-
optimal nodes, higher proportion of deteriorating (blue) edges, and longer path
lengths to the global optima can be observed.

5.2 Visualisation

The network visualisations in Figure 3 capture the compressed local optima
networks (CLONs) on representative instances with different values of α. Plots
were produced with the R statistics language and the igraph library [16]. Net-
work plots are decorated to reflect features relevant to search dynamic. Single
optima are visualised as circles of fixed size. When more than one local optimum
is compressed in a local optimum plateau, the node is represented as a rectangle
with length proportional to its size (ie. number of local optimum configurations).
Red nodes are global optima, green nodes indicate the start configuration of tra-
jectories in the sampling process; recall that our implementation combines 20
independent ILS runs to construct the networks; thus up to 20 green starting
nodes can be visualised in the figures. Grey identifies the intermediate nodes,
with grey edges representing improving transitions. Blue edges indicate deterio-
rating transitions, with blue nodes indicating the end of these transitions. The
edges width is proportional to the sampled frequency of transitions, thus thick
edges represent common search paths. In order to have manageable images, only
5% of the worsening transitions are shown. That is, the networks are pruned be-
fore visualisation by removing 95% of the deteriorating edges selected uniformly
at random. The CLON visualisations in Figure 3 support what the metrics in-
dicate. Instances get harder to search as α increases, because more intermediate
nodes appear and the trajectories get longer. The size of the global optimum
node decreases drastically with increasing α. For low values of α (plots 3a, and
3b) a large “central” global optimum node is observed, which attracts all the
search trajectories. As α increases, (plots 3c - 3f), the size of the global opti-
mum decreases, and additional disconnected global optima may appear. Clearly,
with increasing α, large sub-optimal compressed nodes emerge, and the propor-
tion of deteriorating edges (visualised in blue) is larger. This indicates that the
search process gets trapped in large sub-optimal nodes, requiring several escape
attempts before finding an exit towards the global optimum. With increasing α,
the path lengths of the trajectories to the global optimum (optima), measured
as the number of edges they contain, tends to increase.
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Fig. 3: CLONs for representative benchmark instances. The global optimum (op-
tima) are indicated in red, while the start nodes in green. Edge widths are pro-
portional to their weight. Blue dashed edges indicate deteriorating transitions.



The term ‘funnel’ was introduced in the protein folding community to de-
scribe “a region of configuration space that can be described in terms of a set
of downhill pathways that converge on a single low-energy structure or a set
of closely-related low-energy structures.” [17]. It has been suggested that the
energy landscape of proteins is characterised by a single deep funnel, a feature
that underpins their ability to fold to their native state. In contrast, some shorter
polymer chains (polypeptides) that misfold, are expected to have other funnels
that can act as traps. We follow this loose definition here, by a funnel we mean
a grouping of local optima in a coarse-grained structure around a high quality
solution. According to this definition, most of the instances we analysed across
the different values of α reveal a single funnel. This is consistent with the results
reported in [5], showing that there exist big valley structures in the landscapes
of 3-SAT and MAX-3SAT. However, in some of the hardest overconstrained in-
stances, our results reveal multiple funnel structures. An example is visualised
in Fig. 3f, where three funnels can be identified as separate connected compo-
nents. The two structures at the top converge to a global optimum (red node),
so we can consider them as global funnels, whereas the structure at the bottom
is a sub-optimal funnel. It is worth stressing that the global structures here en-
countered are approximations, as our approach is based on sampling, and on a
particular value of the perturbation strength of the ILS sampling process. We
argue that this is still an interesting observation, as it suggests that multiple
funnels may exist in hard to solve MAX-SAT instances. When sub-optimal fun-
nels exist, search can get trapped and fail to reach the global optimum despite
a large computational effort.

6 Related Work

Some detailed analyses of random MAX-SAT fitness landscapes, using standard
techniques, concentrate on the over-constrained region [18,19]. More relevant to
this research is the work presented in [6,4,20], where the landscape structure at
and around the phase transition of random MAX-3SAT is explicitly examined.
Frank et al. [6] identity several interesting features of plateaus (such as their size
and number of exits) that impact the performance of local search algorithms.
Sutton et al. [20] also studied the neutral regions by establishing theoretical
bounds on plateau sizes, and assessing their accuracy on sampled problem in-
stances. Sutton et al. [4] computed the exact correlation structure of random
MAX-3SAT instances, showing that the correlation structure is oblivious to the
phase transition, that is landscapes before and after the phase transition show the
same correlation structure. This last result indicates that alternative techniques
for studying the global structure of fitness landscapes, such as our proposal in
this article, are required to gain a deeper understanding of search difficulty.



7 Discussion and Conclusion

We revisited the global structure of random MAX-3SAT fitness landscapes across
the transition from underconstrained to overconstrained instances, using local
optima networks analysis and visualisation. Our results confirm some previous
findings, but also bring new structural metrics that correlate and help to explain
the increased search cost incurred by stochastic local search algorithms in the
phase transition region and beyond. The compressed LON model proved very
valuable as a tool to analyse and visualise the landscapes’ global structure. Before
the phase transition, a large global optimal node is observed that is easy to reach
(after a few hops) by local search algorithms. During the phase transition and
beyond, however, the size of the global optimum drastically decreases, while the
size of sub-optimal compressed nodes increases. The proportion of transitions to
deteriorating solutions greatly increases, as well as the length of the trajectories
towards the global optimum.

Under our empirical setting, most of the instances we studied revealed a sin-
gle ‘valley’ or ‘funnel’. A rigorous and well established definition of funnels is still
lacking in evolutionary computation. We take the term here to loosely refer to a
grouping of local optima, forming a coarse-level gradient towards a high quality
solution at the end. Some of the hardest instances we considered (for high val-
ues of α) showed several disconnected groups of local optima. We suggest that
these groupings may be related to the notion of sub-optimal funnels. Multiple
funnels have been empirically observed in other hard combinatorial landscapes
[21,10,22], contributing to our understanding of why some instances are harder
to solve than others. To the best of our knowledge, multiple funnels have not
been documented in the study of MAX-SAT fitness landscapes. This observation
deserves further investigation. The funnel structure, as studied by local optima
networks, depends on the amount of perturbation defining the transition edges
[22]. Moreover, when sampling is involved, the identification of any global struc-
ture is approximated. A more precise characterisation of these structures, as
well as the study of larger and different classes of MAX-SAT instances, is left as
future work.
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