Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31748
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Goranova, Mila | en_UK |
dc.contributor.author | Contreras-Cruz, Marco A. | en_UK |
dc.contributor.author | Hoyle, Andrew | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.date.accessioned | 2020-09-29T00:04:00Z | - |
dc.date.available | 2020-09-29T00:04:00Z | - |
dc.date.issued | 2020 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/31748 | - |
dc.description.abstract | Antibiotic resistance is one of the major challenges that we are facing today. The frequent overuse of antibiotics is one of the main reasons for the development of resistance. A mathematical model of bacterial population dynamics is used, where drug administration and absorption mechanics are implemented to evaluate the fitness of automatically designed treatments. To maximise the probability of curing the host while minimising the total drug used we have explored treatments with different daily dosages and lengths. Two multi-objective population-based methods, a well-known evolutionary algorithm and a particle swarm optimisation algorithm are tuned and contrasted when solving the posed treatment design problem. The best solutions found by our approach suggest treatments ranging from five to seven days with a high initial dose, followed by lower doses, use lower amounts of the drug than the standard common practice of fixed daily dosages over ten days. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | IEEE | en_UK |
dc.relation | Goranova M, Contreras-Cruz MA, Hoyle A & Ochoa G (2020) Optimising Antibiotic Treatments with Multi-objective Population-based Algorithms. In: CEC 2020: Congress on Evolutionary Computation. 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, United Kingdom, 19.07.2020-24.07.2020. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/cec48606.2020.9185489 | en_UK |
dc.rights | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en_UK |
dc.subject | Antibiotics | en_UK |
dc.subject | Treatment Scheduling and Design | en_UK |
dc.subject | Noisy Multi-Objective optimisation | en_UK |
dc.subject | Stochastic Mathematical Modelling | en_UK |
dc.subject | Pharmacokinetics/Pharmacodynamics Modelling | en_UK |
dc.subject | Evolutionary Algorithms | en_UK |
dc.subject | Particle Swarm optimisation | en_UK |
dc.title | Optimising Antibiotic Treatments with Multi-objective Population-based Algorithms | en_UK |
dc.type | Conference Paper | en_UK |
dc.identifier.doi | 10.1109/cec48606.2020.9185489 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Engineering and Physical Sciences Research Council | en_UK |
dc.citation.btitle | CEC 2020: Congress on Evolutionary Computation | en_UK |
dc.citation.conferencedates | 2020-07-19 - 2020-07-24 | en_UK |
dc.citation.conferencelocation | Glasgow, United Kingdom | en_UK |
dc.citation.conferencename | 2020 IEEE Congress on Evolutionary Computation (CEC) | en_UK |
dc.citation.date | 03/09/2020 | en_UK |
dc.citation.isbn | 9781728169293 | en_UK |
dc.publisher.address | Piscataway, NJ, USA | en_UK |
dc.contributor.affiliation | University of Stirling | en_UK |
dc.contributor.affiliation | Universidad de Guanajuato | en_UK |
dc.contributor.affiliation | University of Stirling | en_UK |
dc.contributor.affiliation | University of Stirling | en_UK |
dc.identifier.wtid | 1660049 | en_UK |
dc.contributor.orcid | 0000-0001-9436-892X | en_UK |
dc.contributor.orcid | 0000-0002-9117-7041 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dc.date.accepted | 2020-04-15 | en_UK |
dcterms.dateAccepted | 2020-04-15 | en_UK |
dc.date.filedepositdate | 2020-09-28 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Goranova, Mila|0000-0001-9436-892X | en_UK |
local.rioxx.author | Contreras-Cruz, Marco A.| | en_UK |
local.rioxx.author | Hoyle, Andrew|0000-0002-9117-7041 | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.project | Project ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266 | en_UK |
local.rioxx.freetoreaddate | 2020-09-28 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2020-09-28| | en_UK |
local.rioxx.filename | Optimising-Antibiotic-Treatments-Mila-Goranova.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 9781728169293 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Optimising-Antibiotic-Treatments-Mila-Goranova.pdf | Fulltext - Accepted Version | 236.56 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.