Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31748
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGoranova, Milaen_UK
dc.contributor.authorContreras-Cruz, Marco A.en_UK
dc.contributor.authorHoyle, Andrewen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.date.accessioned2020-09-29T00:04:00Z-
dc.date.available2020-09-29T00:04:00Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31748-
dc.description.abstractAntibiotic resistance is one of the major challenges that we are facing today. The frequent overuse of antibiotics is one of the main reasons for the development of resistance. A mathematical model of bacterial population dynamics is used, where drug administration and absorption mechanics are implemented to evaluate the fitness of automatically designed treatments. To maximise the probability of curing the host while minimising the total drug used we have explored treatments with different daily dosages and lengths. Two multi-objective population-based methods, a well-known evolutionary algorithm and a particle swarm optimisation algorithm are tuned and contrasted when solving the posed treatment design problem. The best solutions found by our approach suggest treatments ranging from five to seven days with a high initial dose, followed by lower doses, use lower amounts of the drug than the standard common practice of fixed daily dosages over ten days.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationGoranova M, Contreras-Cruz MA, Hoyle A & Ochoa G (2020) Optimising Antibiotic Treatments with Multi-objective Population-based Algorithms. In: CEC 2020: Congress on Evolutionary Computation. 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, United Kingdom, 19.07.2020-24.07.2020. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/cec48606.2020.9185489en_UK
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectAntibioticsen_UK
dc.subjectTreatment Scheduling and Designen_UK
dc.subjectNoisy Multi-Objective optimisationen_UK
dc.subjectStochastic Mathematical Modellingen_UK
dc.subjectPharmacokinetics/Pharmacodynamics Modellingen_UK
dc.subjectEvolutionary Algorithmsen_UK
dc.subjectParticle Swarm optimisationen_UK
dc.titleOptimising Antibiotic Treatments with Multi-objective Population-based Algorithmsen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/cec48606.2020.9185489en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.citation.btitleCEC 2020: Congress on Evolutionary Computationen_UK
dc.citation.conferencedates2020-07-19 - 2020-07-24en_UK
dc.citation.conferencelocationGlasgow, United Kingdomen_UK
dc.citation.conferencename2020 IEEE Congress on Evolutionary Computation (CEC)en_UK
dc.citation.date03/09/2020en_UK
dc.citation.isbn9781728169293en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversidad de Guanajuatoen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.identifier.wtid1660049en_UK
dc.contributor.orcid0000-0001-9436-892Xen_UK
dc.contributor.orcid0000-0002-9117-7041en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2020-04-15en_UK
dcterms.dateAccepted2020-04-15en_UK
dc.date.filedepositdate2020-09-28en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorGoranova, Mila|0000-0001-9436-892Xen_UK
local.rioxx.authorContreras-Cruz, Marco A.|en_UK
local.rioxx.authorHoyle, Andrew|0000-0002-9117-7041en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.projectProject ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2020-09-28en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2020-09-28|en_UK
local.rioxx.filenameOptimising-Antibiotic-Treatments-Mila-Goranova.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781728169293en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Optimising-Antibiotic-Treatments-Mila-Goranova.pdfFulltext - Accepted Version236.56 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.