
Optimising Antibiotic Treatments with
Multi-objective Population-based Algorithms

Mila Goranova
Computing Science
and Mathematics,

University of Stirling
Stirling, United Kingdom
m.g.goranova@stir.ac.uk

Marco A. Contreras-Cruz
Electronics Engineering Department

University of Guanajuato,
DICIS

Salamanca, Mexico
ma.contrerascruz@ugto.mx

Andrew Hoyle
Computing Science
and Mathematics,

University of Stirling
Stirling, United Kingdom
andrew.hoyle@stir.ac.uk

Gabriela Ochoa
Computing Science
and Mathematics,

University of Stirling
Stirling, United Kingdom

gabriela.ochoa@cs.stir.ac.uk

Abstract—Antibiotic resistance is one of the major challenges
that we are facing today. The frequent overuse of antibiotics
is one of the main reasons for the development of resistance.
A mathematical model of bacterial population dynamics is
used, where drug administration and absorption mechanics are
implemented to evaluate the fitness of automatically designed
treatments. To maximise the probability of curing the host while
minimising the total drug used we have explored treatments
with different daily dosages and lengths. Two multi-objective
population-based methods, a well-known evolutionary algorithm
and a particle swarm optimisation algorithm are tuned and
contrasted when solving the posed treatment design problem.
The best solutions found by our approach suggest treatments
ranging from five to seven days with a high initial dose, followed
by lower doses, use lower amounts of the drug than the standard
common practice of fixed daily dosages over ten days.

Index Terms—Antibiotics, Treatment Scheduling and De-
sign, Noisy Multi-Objective Optimisation, Stochastic Mathemat-
ical Modelling, Pharmacokinetics/Pharmacodynamics Modelling,
Evolutionary Algorithms, Particle Swarm Optimisation.

I. INTRODUCTION

Since Penicillin was introduced in 1942, antibiotics have
been increasingly prescribed in medicine, agriculture and
aquaculture. Their high usage has contributed to the evolution
of resistant bacteria strains. These strains are more difficult to
treat, or simply cannot be killed by the antibiotics — instead,
they survive and multiply [6].

Conventional treatments apply a constant dose for a fixed
amount of time — for example, take 60mg per day for 10
days. However, medical studies have indicated that shorter
treatments can be effective [18]. Other studies have shown that
an initial higher dose followed by a lower maintenance dose
is beneficial to patients with critical illnesses [12]. Although
formulations using bio-inspired algorithms have been proposed
for designing cancer chemotherapies [17], [19]–[23], very little
work in the literature uses evolutionary algorithms to design
tailored antibiotic treatments. A recent study by Cicchese
et al. [3] uses a genetic algorithm to design regimens to
treat Tuberculosis infections, however, the authors assume that
doses are fixed across the treatment, and vary instead the
frequency of application of multiple drugs.

This work is looking into optimising antibiotic treatments,
which are effective while also short and use the least amount

of drug as possible. We extend a mathematical model that sim-
ulates the progression of a bacterial infection, first introduced
by Paterson et al. [9] where a single-objective evolutionary
algorithm was used to design effective treatments. Ochoa et
al. also applied a multi-objective evolutionary algorithm in
order to automatically design successful antibiotic treatments
where constraints and objectives are combined. [16].

The main contributions of this article are as follows:
• To extend the mathematical model used in [9], [16] with

a pharmacokinetics/pharmacodynamics (PK/PD) compo-
nent modelling the antibiotic absorption from the stomach
to the blood flow.

• To use a Tau-leaping approach to speed up the simulation
time of the stochastic bacteria population model.

• To contrast two population-based algorithms (evolution-
ary vs. particle swarm optimisation) in the task of op-
timising a multi-objective formulation of the treatment
design problem.

II. MATHEMATICAL MODEL

We followed the mathematical model formulation and pa-
rameters detailed in in [9] and [16], where a stochastic model
of the progression of a bacterial infection inside a single host,
and the effect of antibiotic treatment, is proposed.

When antibiotic treatments are designed, there are two key
variables — the daily dosages and the treatment duration. This
is modelled as a vector of doses x = (x1, x2, ..., x10), where
xi represents the dosage taken on day i, where 0 ≤ xi ≤
60 (60 was chosen as the maximum dosage as high levels
of antibiotics in the body could be toxic). In this work, we
consider a vector of real numbers to encode treatments, xi
∈ R, instead of a vector of integer numbers, xi ∈ Z as was the
case in [9] and [16]. This allows us to explore more precise
prescriptions, which may be relevant considering the recent
trend in personalised medicine.

The model follows the steps below:
• Antibiotic dose for the day is taken. The following steps

happen until the next dose needs to be taken:
– Probabilities for bacteria’s population death and re-

production are calculated.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.



– Bacteria population is updated based on the proba-
bilities.

– Time increases by a time-step of 15 minutes.
– New concentration of the antibiotic in the body is

calculated.
• Next dose is taken.
The model is detailed in Algorithm 1 where the steps listed

above are described further.

A. Parameters and Equations

The equations below show how the reproduction rate and
the death rate of the bacteria population (B) are calculated.
Table I provides a breakdown with the parameter description
and values. All but a, g and p parameter values were chosen by
Paterson et al. [9] such that as the concentration of antibiotics
increases the death rate will increase as well until it reaches
a saturation point. The concentration of antibiotics naturally
decays within a host so that was taken into account when
choosing the parameters’ values.

The parameter values for a and g were chosen so that
the maximum concentration of antibiotics in the blood corre-
sponds to the half-life time of the antibiotic - the time required
for the concentration of the antibiotic in the body to be reduced
by one-half. p was chosen to be 0.8 as the full dosage of
antibiotics does not get processed by the metabolism.

ReproductionRate(bacteria) = rB

(
1− B

K

)
(1)

DeathRate(bacteria) = mB +
(max−min)(CBlood

mic )k

(CBlood

mic )k − min
max

B

(2)

TABLE I
LIST OF PARAMETERS AND VALUES. ALL OF THE VALUES EXCEPT FOR a,

g AND p ARE TAKEN FROM [9].

Parameter Description Value
r Replication rate of bacteria B 2.7726
K Carrying capacity 1000
m Mortality rate of bacteria 0.2
a Degradation rate of antibiotics in the stomach 1.386
g Degradation rate of antibiotics in the blood 1.253
p Proportion of antibiotics that reaches the blood 0.8
max Max net growth rate in absence of antibiotics 2.5
min Min net growth rate at high antibiotic levels -2.1
mic Min inhibitory concentration (MIC) 16
k Hill coefficient 4

B. PK/PD

PK/PD modelling is the basis of modern-day pharma-
cotherapy. Pharmacokinetics describes the drug concentration
over time as it courses in the body/host, while the pharma-
codynamics observes the effects resulting from the certain
concentration of the drug present in the body/host. In other
words, pharmacokinetics answers the question ‘what the body
does to the drug’, while pharmacodynamics — ‘what the drug
does to the body’ [10] [13].

In our approach, the PK/PD model is used when calculating
the concentration of antibiotics when the daily dose is admin-
istered orally. We represent this concentration as CStomach,
and its slow decrease during the simulation is calculated by
the following equation:

dCStomach
dt

= −aCStomach (3)

However, for the antibiotics to be effective, they need to
reach the bloodstream where they can fight the bacterial
infection. The equation below calculates the level of antibiotics
in the blood during the day:

dCBlood
dt

= paCStomach − gCBlood (4)

As it could be observed from Equation 2 the death rate of the
bacteria is correlated with the concentration of the antibiotic
— the higher the concentration, the higher the death rate is.

C. Tau-leaping

To save computation power and produce faster results a
Tau-leaping approach is taken in this work. Tau-leaping is
an approximate method for the simulation of a stochastic
system based on the Gillespie algorithm [8]. In Algorithm
1 we use a time-step of 15 minutes for the approximation
as this value gives a good balance for speeding up the
process without losing too much accuracy. For each time-
step, an approximation is calculated for how much the bacteria
population has decreased (DeathRate(bacteria)) and increased
(ReproductionRate(bacteria)). Then the bacteria population
is updated by taking the bacteria from the previous time-step
adding the ReproductionRate(bacteria) and subtracting the
DeathRate(bacteria), as shown below

B(t+τ) = B(t) + Poisson(τReproductionRate(bacteria))

−Poisson(τDeathRate(bacteria)) (5)

This mathematical formula is corresponds to lines 15 to 17 in
Algorithm 1 where τ = timestep.

As this is a stochastic model, for each dosage regimen, we
run the model 500 times, and record the number of these runs
where the antibiotic successfully cleared the bacterial infection
by the end of the treatment period.

D. Objectives

We consider a bi-objective formulation of the problem of
optimising antibiotic treatments. Specifically, the two objective
functions to be minimised are:

• The percentage of runs of the mathematical model where
the bacteria survives the treatment — failure rate ffr.

• The total amount of antibiotics used, as measured by the
sum of the entries in the dosage vector — total antibiotic
fta.



Algorithm 1 Outline of the simulation model
1: treatment = {x1, x2, . . .xn}
2: bacteria = 1000
3: concentrationblood = 0
4: concentrationstomach = 0
5: time = 0
6: timestep = 15 minutes
7: end of day = 1440 minutes
8: for day 1 until the last day of treatment do
9: concentrationstomach = concentrationstomach + treatmentxday

10: while time ≤ end of day or bacteria > 0 do
11: ReproductionRate(bacteria) is calculated using Equation 1.
12: DeathRate(bacteria) is calculates using Equation 2.
13: bacteria increase = Poisson(timestep×ReproductionRate(bacteria))
14: bacteria decrease = Poisson(timestep×DeathRate(bacteria))
15: bacteria = bacteria + bacteria increase - bacteria decrease
16: time = time+ timestep
17: concentrationstomach is calculated by solving Equation 3.
18: concentrationblood is calculated by solving Equations 3 and 4.
19: end while
20: end for

III. COMPUTATIONAL METHODS

A. Implementation of the objectives
The two objectives described in Section II-D are failure rate

ffr and total amount of antibiotics taken fta. The failure rate
is estimated by running the mathematical model with a fixed
number of simulations and returning the number of runs in
which the bacteria population was not eliminated. For example
the treatment vector x = (44.92, 60, 53.17, 39.25, 60, 1.70)
has a fta = 259.04mg and ffr = 0.0391 which could be read
as 3.91%.

The failure rate is determined by the stochastic model and
due to the random elements in the approach, one treatment
could have different outcomes per run — failure (the bacte-
ria population does not get eradicated) or success (bacteria
population is eradicated). The model is run several times for
the same treatment and the failure rate is determined by how
many times the outcome was a fail. The number of model
runs had to be carefully selected to minimise the noise, but
also minimise the number needed to reduce the computational
effort. After preliminary investigations, we have chosen to use
500 model simulations for estimating the failure rate for the
candidate treatment solutions.

B. Population-based algorithms
We considered two population-based algorithms as de-

scribed below. Our implementation used the Python library
JmetalPy [1].

1) Non-dominated Sorting Genetic Algorithm II (NSGA-
II): NSGA-II uses non-dominated sorting of individuals in
the population, with a crowding distance penalty applied to
individuals to maintain a diverse Pareto-front [5]. It is one of
the best-known and widely used algorithms and was previously
used for optimising antibiotic treatments in [16].

2) Speed-constrained Multi-objective Particle Swarm Opti-
misation Algorithm (SMPSO): SMPSO [14], [15] is a multi-
objective particle swarm optimisation algorithm that uses a
strategy to limit the velocity of the particles. This strategy
allows for producing new effective particle positions when
the velocity becomes too high. It also includes polynomial
mutation and an external archive to store the non-dominated
solutions found during the search. SMPSO produced remark-
able results when compared to NSGA-II on a number of
standard benchmark functions.

C. Hypervolume Indicator

To compare the two algorithms’ performance, we use the
hypervolume indicator (also known as Lebesgue measure or
S metric) as a measure. The hypervolume indicator is a
set measure to evaluate the performance of multi-objective
algorithms using a reference point. In our case, this is the ref-
erence point with maximum total antibiotics and the reference
point with maximum failure rate as we are minimising our
objective functions. These reference points are the vector of
the maximum 10 days period with the maximum dosage of 60:
x = [60, 60, 60, 60, 60, 60, 60, 60, 60, 60] with the maximum
possible fta = 600mg and the maximum possible failure rate
ffr = 100%. The reference point to the Pareto-front space
is measured to produce a single number — the hypervolume
indicator. As our two objective functions need to be minimised,
the higher the hypervolume indicator the better the solution
is. The implementation of the calculation for the hypervolume
used in this work is the one from Fonseca et al. [7].

D. Parameter Tuning

We used the same configuration effort to tune the multi-
objective optimisation algorithms in the design of antibiotic



treatments. We applied an automatic configurator to find the
highest performing configurations of the algorithms to avoid
a bias in the performance of the techniques and to develop a
fair comparison.

We selected the software package irace [11]. This software
has been applied to a wide variety of configuration tasks,
which include not only tuning the numeric parameters of
multi-objective optimisations but also designing automatically
new multi-objective optimisation algorithms [2].

In our study, we only configured the numerical parameters
of the algorithms by using the iterated F-race implemented in
irace.

In iterative F-races, configurations are sampled according
to a particular distribution (that evolves with time), and the
configurations are evaluated with a racing method to find the
optimal configuration. The racing consists of evaluating the
performance of the configurations with a sequence of training
instances and developing the Friedman test (a statistical test
that is used to detect differences in variables across multiple
test attempts [4]) to remove statistically worse configurations.
This process is repeated until a stopping criterion is met — for
example, a maximum number of executions of the algorithm.

During the configuration, the NSGA-II algorithm used the
SBX crossover, the polynomial mutation, and the binary
tournament selection with the ranking and crowding distance
comparator. The SMPSO algorithm used the polynomial mu-
tation operator, and the leader replacement based on crowding
distance archive. For the configuration of the numerical param-
eters, we used the iterated F-race with 120 executions of the
algorithm. Each run of the algorithm executed a maximum
number of 5000 function evaluations, with 500 runs of the
mathematical model. The real numbers consider four decimal
places in the configuration. Tables II and III describe the
numerical parameters of both algorithms and the results of
the tuning procedure.

TABLE II
NSGA-II DEFAULT AND TUNED PARAMETER VALUES.

Parameter Domain Default Tuned
Population size (30,100) 100 62
Offspring population (30,100) 100 70
Mutation probability (0.0,1.0) 0.1 0.0971
Mutation distribution index (5.0, 400.0) 20 306.2005
Crossover probability (0.0, 1.0) 1 0.5084
Crossover distribution index (5.0, 400.0) 20 128.7306

TABLE III
SMPSO DEFAULT AND TUNED PARAMETER VALUES.

Parameter Domain Default Tuned
Swarm size (30,100) 100 59
Mutation probability (0.0,1.0) 0.1 0.2821
Mutation distribution index (5.0, 400.0) 20 307.3271
Size of the archive (30, 100) 100 56

IV. RESULTS

A. Hypervolume Comparison of Algorithms

Figure 1 shows the hypervolume results of 30 runs for each
of the multi-objective algorithms — NSGA-II with default
parameters, NSGA-II with tuned parameters, SMPSO with
default parameters and SMPSO with tuned parameters.

Fig. 1. Distribution of the hyper-volume metric for the two algorithms and
parameter settings.

1) NSGA-II and SMPSO Performance: From Figure 1 we
can clearly observe that the solutions produced by NSGA-II
performed better in regards to the hypervolume compared to
SMPSO. The median for the hypervolume for all 60 runs (both
tuned and with default parameters) of NSGA-II is 432.8654
and the one for SMPSO is 429.9859. Using the Welch Two
Sample t-test, which tests whether the means of two popu-
lations are equal, gives a p-value< 0.0001 showing that the
performance of the two algorithms is significantly different.
The Wilcoxon Signed Rank Test, which tests whether two
samples follow the same distribution, and the Kolmogorov-
Smirnov Test, which tests whether the mean of two samples
are equal, both have p-values< 0.0001, proving the same
conclusion that NSGA-II outperforms SMPSO.

2) NSGA-II - tuned and with default parameters: It appears
that the tuned NSGA-II performs slightly better than the
default parameters NSGA-II in terms of hypervolume results.
The median of the tuned NSGA-II is 433.0052 and the de-
fault parameter NSGA-II’s median hypervolume is 432.5983.
The best Pareto-front’s hypervolume indicator is significantly
higher as well, the outlier is still better than the lowest-
performing Pareto-front by the default parameter NSGA-II.
This result was expected as the p-value = 0.01258 from
Welch Two Sample t-test. This proves the hypothesis that the
tuned NSGA-II performs better than the default parameter one.
Running the Wilcoxon Signed Rank Test the p − value =
0.01317 and Kolmogorov-Smirnov Test the p-value = 0.03458.
The p-values from the two tests are still less than 0.05 so this
supports the hypothesis as well.



Fig. 2. All solutions with Failure Rate ≤ 10% (0.10) and Total Antibiotics ≤ 300mg from 120 runs of the full multi-objective model using the population-based
algorithms NSGA-II and SMPSO. The figure combines runs from both default parameters and tuned parameter runs of the two algorithms.

3) SMPSO - tuned and with default parameters: In the case
of SMPSO, the tuned algorithm does not perform significantly
better than the default parameter - in fact, it initially appears
that the default parameters outperforms the tuned. The median
of the tuned SMPSO is 429.75 and the median of the default
parameter SMPSO is 430.09. However, the Welch Two Sample
t-test, with p-value = 0.4189, shows that there is no significant
difference, positive or negative, between the tuned or default
parameters for SMPSO. The Wilcoxon Signed Rank Test (p-
value = 0.7091) and Kolmogorov-Smirnov Test (p-value =
0.808) also show there is no evidence of a difference in
performance between the two. This indicates that maybe a
bigger budget for the parameter tuning is needed when tuning
a PSO-based algorithm.

B. Partial Pareto-front of best results for NSGA-II and SMPSO

Figure 2 shows the 10 best solutions obtained from the
30 runs of each of the algorithms (NSGA-II with default
parameters and with tuned, SMPSO with default parameters).
Here, we define ‘best’ as those solutions with the lowest
Failure Rate (%). The NSGA-II with tuned parameters
points coloured in yellow is visibly producing the most non-
dominated solutions followed by NSGA-II with default pa-
rameters (coloured in green). This again adds evidence for the
hypothesis suggested that NSGA-II outperforms SMPSO.

C. Best Treatments

Table IV shows the top 10 overall best solutions. The
solutions are ordered by Re-Evaluated Failure Rate from
lowest to highest. Here, we refer to best as the solutions with
lowest Failure Rate and lowest Total Antibiotics for that rate.

When designed, the treatments could be of lengths between
3 to 10 days and the upper bound for a single dosage is set
to 60mg. In cases where there is a dosage below 1mg, it

has been rounded down to 0mg as it makes little difference
to the failure rate; the failure rate was then re-evaluated (as
discussed below). For example the treatment x = (59.892,
41.879, 38.623, 56.518, 25, 46.632, 0.558, 0.48, 0, 0.004),
where the initial length of the treatment is 10 days and the
last treatment is so close to 0mg that it has been rounded
down. After rounding up the dosages to the second decimal
this treatment is listed in the table as x = (59.89, 41.88, 38.62,
56.52, 25, 46.63) where the final length is 6 days.

All of the solution vectors listed in Table IV were re-
evaluated using the mathematical model with 10,000 runs.
It was expected for some differences in the Failure Rate
to be present due to the noise produced by the stochastic
characteristic of the mathematical model. During the iterations
of the two multi-objective algorithms, the mathematical model
was run 500 times which could contribute further to the noise
in the failure rate evaluation.

In Table IV, the top 10 of the solutions have a difference
over 5% between the failure rate and the re-evaluated failure
rate which is a lot higher than expected but could be explained
by the stochastic characteristic of the mathematical model.

Another observation about the solutions listed in Table IV
is that only two out of the ten were generated using the
SMPSO algorithm (one solution with tuned parameters and
one with default parameters). Five out of the ten solutions
were generated with NSGA-II with default parameters and
three with tuned parameters. This is another indication of the
better performance of NSGA-II over SMPSO.

Figure 3 shows the top 5 treatments from Table IV, which
have produced the lowest failure rate after the re-evaluation.
Each of the treatments is represented by a barplot where each
of the bars is the amount of drug for each day of treatment.
The dose for the day could be seen at the top of each of the



TABLE IV
THE BEST 10 TREATMENTS OBTAINED BY OUR APPROACH. THEY ALL HAVE FAILURE RATE BETWEEN 0 AND 0.10. THE TREATMENTS ARE ORDERED BY
Re-eval. Failure Rate STARTING FROM THE LOWEST. THE LENGTH OF THE TREATMENT, AS WELL AS THE ALGORITHM THAT HAS PRODUCED THE RESULT,

ARE PROVIDED.

Treatment Vector Length (days) Total Antibiotics Failure Rate (%) Re-eval. Failure Rate (%) Algorithm
56.46, 46.70, 51.21, 41.14, 31.05, 46.82 6 273.38 0 2.17 NSGA-II Tuned
59.89, 41.88, 38.62, 56.52, 25, 46.63 6 268.54 0 2.78 NSGA-II Default
44.92, 60, 53.17, 39.25, 60, 1.70 6 259.04 0.4 3.91 SMPSO Default
58.01, 45.78, 55.60, 40.94, 51.85 5 252.18 0.8 4 NSGA-II Tuned
59.95, 44.53, 52.70, 36, 55.05, 0, 7 7 255.23 0.6 4.6 NSGA-II Default
58.75, 47, 57.36, 37.71, 37.71 5 238.53 1.4 5.57 NSGA-II Default
53, 53, 54.01, 29, 54.47 5 243.48 1.2 6.68 NSGA-II Tuned
57.14, 50, 45.66, 49.93, 20.67, 13.56 6 236.96 0 6.84 SMPSO Tuned
56.18, 44.96, 45.43, 42, 43 5 231.57 1.8 6.9 NSGA-II Default
58, 43.43, 46.99, 52, 25.20 5 225.62 3.2 7.91 NSGA-II Default

Fig. 3. Barplot representation of some of the treatments with the lowest failure rate after re-evaluation. Each of the bars corresponds to a single day in the
treatment.

bars and the failure rate of the treatment is provided below
the barplot for that treatment.

What we can observe from Figure 3 is that three out of the
five treatments alternate between a very high dosage (between
50mg and 60mg) and a lower dosage. The pattern observed in
the top solutions in the previous studies [9], [16] was towards
tapered doses where the first dose will be the highest and every
dose after it will be lower than the previous. This difference
in dose patterns could be explained by the introduction of
the PK/PD model as the concentration of antibiotics in the
body is modelled differently impacting the DeathRatebacteria
calculation.

V. CONCLUSION

The proposed approach looks into the problem of overuse
of antibiotics and more specifically optimising the number of
antibiotics prescribed and the length of the overall treatment.
The automatic design of possible treatments and their evalu-
ation has little constraints at the moment — upper and lower
limits on the treatment (3 to 10 days) and upper and lower
limits on the daily dosages (0mg to 60mg) where the bacteria
levels are always the same.

In our study, we introduced new techniques to the mathe-
matical model — the PK/PD modelling, and switched from

using the standard Gillespie Algorithm to another variation of
the Gillespie Algorithm — Tau-leaping for predicting events.
Then two population-based multi-objective algorithms were
chosen — NSGA-II and SMPSO for designing the antibiotic
treatments. Both of the algorithms were then tuned and the
hypervolume for each of the runs of the algorithms was
calculated. Those hypervolume indicators were then compared
as well as some of the best solutions. What could be concluded
from the results is that the NSGA-II algorithm provided
better results than SMPSO. There was also not a significant
improvement upon tuning the algorithms in terms of results at
the end of the budget of 5000 iterations. The noise shown
in the results proved that it is imperative that the correct
algorithm and tuned parameters is used in the optimisation
process to guarantee the best solutions.

In this model, the patient’s profile (overall health, diet,
other possible medical conditions) and correct usage of the
antibiotics are not taken into account even though they play a
big factor when fighting bacterial infections. These points will
be investigated for the future versions of this model as well
as including more objectives when designing the treatments.



REFERENCES

[1] Antonio Benitez-Hidalgo, Antonio J Nebro, Jose Garcia-Nieto, Iza-
skun Oregi, and Javier Del Ser. jmetalpy: a python framework
for multi-objective optimization with metaheuristics. arXiv preprint
arXiv:1903.02915, 2019.

[2] Leonardo CT Bezerra, Manuel López-Ibánez, and Thomas Stützle. Auto-
matic component-wise design of multiobjective evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 20(3):403–417, 2015.

[3] Joseph M. Cicchese, Elsje Pienaar, Denise E. Kirschner, and Jennifer J.
Linderman. Applying optimization algorithms to tuberculosis antibiotic
treatment regimens. Cellular and Molecular Bioengineering, 10(6):523–
535, Dec 2017.

[4] William Jay Conover and William Jay Conover. Practical nonparametric
statistics. 1980.

[5] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[6] World Health Organization et al. Global action plan to control the spread
and impact of antimicrobial resistance. 2017.

[7] Carlos M Fonseca, Luı́s Paquete, and Manuel López-Ibánez. An
improved dimension-sweep algorithm for the hypervolume indicator. In
2006 IEEE international conference on evolutionary computation, pages
1157–1163. IEEE, 2006.

[8] Daniel T Gillespie. Approximate accelerated stochastic simulation
of chemically reacting systems. The Journal of Chemical Physics,
115(4):1716–1733, 2001.

[9] Iona K. Paterson, Andrew Hoyle, Gabriela Ochoa, Craig Baker-Austin,
and Nick Taylor. Optimising antibiotic usage to treat bacterial infections.
Scientific Reports, 6:37853, 11 2016.

[10] Matthew E Levison and Julie H Levison. Pharmacokinetics and
pharmacodynamics of antibacterial agents. Infectious Disease Clinics,
23(4):791–815, 2009.

[11] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Mauro Birattari, and Thomas Stützle. The irace package: Iterated
racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016.

[12] Cathrine McKenzie. Antibiotic dosing in critical illness. Journal of
antimicrobial chemotherapy, 66(suppl 2):ii25–ii31, 2011.

[13] Bernd Meibohm and H Derendorf. Basic concepts of pharmacoki-
netic/pharmacodynamic (pk/pd) modelling. International journal of
clinical pharmacology and therapeutics, 35(10):401–413, 1997.

[14] Antonio J Nebro, Juan J Durillo, José Garcı́a-Nieto, Cristóbal Barba-
González, Javier Del Ser, Carlos A Coello Coello, Antonio Benı́tez-
Hidalgo, and José F Aldana-Montes. Extending the speed-constrained
multi-objective pso (smpso) with reference point based preference
articulation. In International Conference on Parallel Problem Solving
from Nature, pages 298–310. Springer, 2018.

[15] Antonio J Nebro, Juan José Durillo, Jose Garcia-Nieto, CA Coello
Coello, Francisco Luna, and Enrique Alba. Smpso: A new pso-
based metaheuristic for multi-objective optimization. In 2009 IEEE
Symposium on Computational Intelligence in Multi-Criteria Decision-
Making (MCDM), pages 66–73. IEEE, 2009.

[16] Gabriela Ochoa, Lee A Christie, Alexander E Brownlee, and Andrew
Hoyle. Multi-objective evolutionary design of antibiotic treatments.
Artificial Intelligence in Medicine, 102:101759, 2020.

[17] Gabriela Ochoa, Minaya Villasana, and Edmund K Burke. An evolution-
ary approach to cancer chemotherapy scheduling. Genetic Programming
and Evolvable Machines, 8(4):301–318, 2007.

[18] Christopher M Parry, Vo Anh Ho, Phan Van Be Bay, Mai Ngoc Lanh,
Le Thanh Tung, Nguyen Thi Hong Tham, John Wain, Tran Tinh
Hien, Jeremy J Farrar, et al. Randomized controlled comparison of
ofloxacin, azithromycin, and an ofloxacin-azithromycin combination
for treatment of multidrug-resistant and nalidixic acid-resistant typhoid
fever. Antimicrobial agents and chemotherapy, 51(3):819–825, 2007.

[19] Andrei Petrovski, Siddhartha Shakya, and John McCall. Optimising
cancer chemotherapy using an estimation of distribution algorithm and
genetic algorithms. In Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 413–418, 2006.

[20] Andrei Petrovski, Bhavani Sudha, and John McCall. Optimising cancer
chemotherapy using particle swarm optimisation and genetic algorithms.
In International Conference on Parallel Problem Solving from Nature,
pages 633–641. Springer, 2004.

[21] Sui-Man Tse, Yong Liang, Kwong-Sak Leung, Kin-Hong Lee, and
Tony Shu-Kam Mok. A memetic algorithm for multiple-drug cancer
chemotherapy schedule optimization. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 37(1):84–91, 2007.

[22] Minaya Villasana and Gabriela Ochoa. Heuristic design of can-
cer chemotherapies. IEEE transactions on evolutionary computation,
8(6):513–521, 2004.

[23] Minaya Villasana, Gabriela Ochoa, and Soraya Aguilar. Modeling and
optimization of combined cytostatic and cytotoxic cancer chemotherapy.
Artificial intelligence in medicine, 50(3):163–173, 2010.

View publication statsView publication stats

https://www.researchgate.net/publication/343392054



