Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31573
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.authorWright, Jonathanen_UK
dc.contributor.authorHe, Miaomiaoen_UK
dc.contributor.authorLee, Timothyen_UK
dc.contributor.authorMcMenemy, Paulen_UK
dc.date.accessioned2020-08-18T00:01:51Z-
dc.date.available2020-08-18T00:01:51Z-
dc.date.issued2020-11en_UK
dc.identifier.other106650en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31573-
dc.description.abstractLarge-scale optimisation problems, having thousands of decision variables, are difficult as they have vast search spaces and the objectives lack sensitivity to each decision variable. Metaheuristics work well for large-scale single-objective optimisation, but there has been little work for large-scale, multi-objective optimisation. We show that, for the special case problem where the objectives are each additively-separable in isolation and share the same separability, the problem is not separable when considering the objectives together. We define a problem with this property: optimisation of housing stock improvements, which seeks to distribute limited public investment to achieve the optimal reduction in the housing stock's energy demand. We then present a two-stage approach to encoding solutions for additively-separable, large-scale, multi-objective problems called Sequential Pareto Optimisation (SPO), which reformulates the global problem into a search over Pareto-optimal solutions for each sub-problem. SPO encoding is demonstrated for two popular MOEAs (NSGA-II and MOEA/D), and their relative performance is systematically analysed and explained using synthetic benchmark problems. We also show that reallocating seed solutions to the most appropriate sub-problems substantially improves the performance of MOEA/D, but overall NSGA-II still performs best. SPO outperforms a naive single-stage approach, in terms of the optimality of the solutions and the computational load, using both algorithms. SPO is then applied to a real-world housing stock optimisation problem with 4424 binary variables. SPO finds solutions that save 20% of the cost of seed solutions yet obtain the same reduction in energy consumption. We also show how application of different intervention types vary along the Pareto front as cost increases but energy use decreases; e.g., solid wall insulation replacing cavity wall insulation, and condensing boilers giving way to heat pumps. We conclude with proposals for how this approach may be extended to non-separable and many-objective problems.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationBrownlee A, Wright J, He M, Lee T & McMenemy P (2020) A novel encoding for separable large-scale multi-objective problems and its application to the optimisation of housing stock improvements. Applied Soft Computing, 96, Art. No.: 106650. https://doi.org/10.1016/j.asoc.2020.106650en_UK
dc.relation.urihttp://hdl.handle.net/11667/160en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Brownlee A, Wright J, He M, Lee T & McMenemy P (2020) A novel encoding for separable large-scale multi-objective problems and its application to the optimisation of housing stock improvements. Applied Soft Computing, 96, Art. No.: 106650. https://doi.org/10.1016/j.asoc.2020.106650 © 2020, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectEvolutionary algorithmsen_UK
dc.subjectOptimisationen_UK
dc.subjectMulti-objectiveen_UK
dc.subjectLarge-scaleen_UK
dc.subjectEnergyen_UK
dc.subjectBuilding engineeringen_UK
dc.subjectAdditively separableen_UK
dc.subjectCombinatorially separableen_UK
dc.titleA novel encoding for separable large-scale multi-objective problems and its application to the optimisation of housing stock improvementsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2021-08-25en_UK
dc.rights.embargoreason[Accepted_Preprint.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.asoc.2020.106650en_UK
dc.citation.jtitleApplied Soft Computingen_UK
dc.citation.issn1568-4946en_UK
dc.citation.volume96en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderEngineering and Physical Sciences Research Councilen_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.citation.date24/08/2020en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationLoughborough Universityen_UK
dc.contributor.affiliationLoughborough Universityen_UK
dc.contributor.affiliationBirmingham City Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000582762000064en_UK
dc.identifier.scopusid2-s2.0-85089832468en_UK
dc.identifier.wtid1653065en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.contributor.orcid0000-0002-5280-425Xen_UK
dc.date.accepted2020-08-14en_UK
dcterms.dateAccepted2020-08-14en_UK
dc.date.filedepositdate2020-08-17en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.authorWright, Jonathan|en_UK
local.rioxx.authorHe, Miaomiao|en_UK
local.rioxx.authorLee, Timothy|en_UK
local.rioxx.authorMcMenemy, Paul|0000-0002-5280-425Xen_UK
local.rioxx.projectProject ID unknown|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2021-08-25en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-08-24en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2021-08-25|en_UK
local.rioxx.filenameAccepted_Preprint.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1568-4946en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Accepted_Preprint.pdfFulltext - Accepted Version874.98 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.