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Abstract

Large-scale optimisation problems, having thousands of decision variables,
are difficult as they have vast search spaces and the objectives lack sensitivity to
each decision variable. Metaheuristics work well for large-scale single-objective
optimisation, but there has been little work for large-scale, multi-objective
optimisation. We show that, for the special case problem where the objectives
are each additively-separable in isolation and share the same separability, the
problem is not separable when considering the objectives together. We define a
problem with this property: optimisation of housing stock improvements, which
seeks to distribute limited public investment to achieve the optimal reduction
in the housing stock’s energy demand. We then present a two-stage approach to
encoding solutions for additively-separable, large-scale, multi-objective problems
called Sequential Pareto Optimisation (SPO), which reformulates the global
problem into a search over Pareto-optimal solutions for each sub-problem. SPO
encoding is demonstrated for two popular MOEAs (NSGA-II and MOEA/D),
and their relative performance is systematically analysed and explained using
synthetic benchmark problems. We also show that reallocating seed solutions
to the most appropriate sub-problems substantially improves the performance
of MOEA/D, but overall NSGA-II still performs best. SPO outperforms a
naive single-stage approach, in terms of the optimality of the solutions and
the computational load, using both algorithms. SPO is then applied to a real-
world housing stock optimisation problem with 4424 binary variables. SPO
finds solutions that save 20% of the cost of seed solutions yet obtain the same
reduction in energy consumption. We also show how application of different
intervention types vary along the Pareto front as cost increases but energy
use decreases; e.g., solid wall insulation replacing cavity wall insulation, and
condensing boilers giving way to heat pumps. We conclude with proposals
for how this approach may be extended to non-separable and many-objective
problems.
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1. Introduction

Large-scale global optimisation (LSGO) has attracted a lot of attention in
recent years among evolutionary computation researchers, with varied real-world
applications and diverse approaches appearing in the literature [1–5]. Much of
the focus has been on single-objective LSGO, although recently there has been
growing interest in multi-objective LSGO problems [6–10]. There is no universal
definition of a LSGO problem, but typically one involves thousands or more
decision variables. Such problems are difficult because of their correspondingly
very large search spaces, and lack of sensitivity of the objectives to each decision
variable.

The LSGO problem forming the focus of this paper is regional-scale building
stock optimisation. This aims to find the best way to spend limited public
funds on improving housing, to reduce energy demand and the corresponding
emissions. Housing is responsible for more than a quarter of total energy
consumption in the UK [11] and, given a typical house’s lifespan, any significant
improvements must focus on refurbishments to the existing stock [12]. We
consider the multi-objective problem of identifying the trade-off between investment
cost and resulting energy savings for the refurbishments of housing stock at the
city or regional scale. The objectives for this problem are additively separable,
meaning that the variables can be grouped such that dependencies exist within
but not between the groups. An interesting property of housing stock optimisation
is that both the cost and energy objectives have the same separability: the
problem for each house (or group of houses if they share, for example, a district
heating system) is independent of the others. This property is shared by
employee scheduling for large companies [13], specifically where employees are
scheduled at a regional level, and regions are independent of each other. For
single-objective additively-separable problems, the search complexity can be
reduced by considering sub-problems in isolation [14]; however, for multi-objective
problems, we show that there is an additional complication: when considering
the objectives together the problem is, in effect, non-separable where the objectives
share the same additive separability. We term these types of problems combinatorially-
separable.

This paper resolves the problem of low objective sensitivity, and the loss
of separability for large-scale problems, by introducing a two-stage approach
to encoding the solutions called Sequential Pareto Optimisation (SPO). The
approach is applicable to the special case of multi-objective optimisation where
each objective is additively-separable, and the objectives share the same separability
(i.e., combinatorially-separable). In Stage 1, the Pareto-optimal solutions for
each sub-problem are obtained. The solutions are sorted with respect to their
values for one objective, providing a natural ordering for the second stage search.
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Figure 1: Overview of the SPO approach

In Stage 2, an approximation to the Pareto-optimal set for the global problem
is found by searching different combinations of Pareto-optimal solutions to the
sub-problems. Thus, SPO re-encodes the global problem into a search over
Pareto-optimal solutions for each sub-problem. A high-level overview of SPO is
given in Figure 1.

As well as improving overall search efficiency, SPO has several other strengths.
The encoding is independent of the search algorithm used at each of the two
stages, inducing adaptivity to the search spaces of different problems. Costly
function evaluations can be conducted at Stage 1 and then cached for Stage
2, potentially making the large-scale global search faster. Sub-problem level
constraints can also be considered at Stage 1 so that Stage 2 only searches
across feasible solutions.

We demonstrate the SPO approach by application to the multi-objective
building stock optimisation problem, using synthetic variants of this problem
constructed by forming a stock of identical houses. SPO is shown to be robust
and offers a substantial improvement over a naive encoding when using two
different search algorithms. We also apply SPO to a real-world housing stock
optimisation problem, with exploration of the insights that the approach can
reveal to the decision maker. The results show that it is possible to find
solutions savings of 20% of the cost, yet yielding the same reduction in energy
consumption, compared to the solutions that seeded the search. We show how
use of different interventions vary along the Pareto front as cost increases and
energy use decreases: e.g., solid wall insulation replacing cavity wall insulation,
and condensing boilers giving way to heat pumps. This thorough analysis
extends previous preliminary results for a version of the problem that was
smaller in scale but used more time-consuming energy modelling [15, 16].

This work makes several novel contributions:

(1) we show that additively-separable, single-objective problems can become
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non-separable when combined into a multi-objective problem;

(2) a new Sequential Pareto Optimisation method for additively-separable,
large-scale problems is described and demonstrated for the housing stock
optimisation problem;

(3) the paper thoroughly compares and explains the relative performances of
two well-known evolutionary algorithms (NSGA-II and MOEA/D) under
a variety of configurations using the SPO encoding. Implementation and
performance of the two algorithms in concert with SPO are discussed: in
particular, we show that reallocating seed solutions to the most appropriate
sub-problems substantially improves the performance of MOEA/D;

(4) this is the first approach that attempts to simultaneously optimise the
refurbishment of numerous houses for multiple objectives, and as such is
the first to potentially provide information on the trade-off between capital
investment and energy demand reduction in decision-making at a regional
or national level;

(5) the synthetic problems are new test problems developed here to demonstrate
and examine the scalability of the SPO approach. No benchmarks currently
exist that exhibit the combinatorially-separable property, where each objective
shares the same additive-separability.

The rest of this paper is structured as follows: Section 2 discusses related
work on large-scale optimisation problems. The problem is formally defined in
Section 3, where issues around separability for multi-objective problems and
two approaches to encoding (a naive approach and SPO) are outlined. The
real-world problem of housing stock optimisation that motivates this work is
described in Section 4. Experimental results and analysis of the naive and
SPO approaches are presented in Sections 5 and 6.2, where the NSGA-II and
MOEA/D are applied to a synthetic problem, with Section 6.2 presenting results
for a much larger scale synthetic problem. Section 7 reports the results and
analysis of an optimisation run performed on the real-world problem, with
Section 8 drawing conclusions and proposing some possible directions for future
work.

2. Related work

There has recently been increasing interest in large-scale optimisation among
evolutionary computation researchers. This is highlighted in recent reviews
[1, 2] and the release of large-scale benchmark problems [3–5]. Most published
examples focus on problems with one to a few thousand variables, though there
are some examples with millions of variables or more [17–20]. This paper
presents synthetic problems with 4675 and 74 800 binary variables (numbers
derived from the real-world problem), and a real-world problem with 4424
variables, placing these problems in the realm of large-scale optimisation.
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As one might expect, the most successful approaches for large-scale problems
exploit characteristics of the application used to improve search efficiency. These
include features such as separability, known partial solutions, and constraints
which reduce the search space [17–20]. Li et al. [21] describe an approach in
which problems are divided into their separable and non-separable components:
these are then searched using a two-level algorithm incorporating multiple surrogate
fitness models. Li et al. [22] further explore the concept of non-separability in
several popular benchmark functions. In Zhang et al. [9], the decision variables
are divided into those related to convergence and those related to diversity,
and are separately targeted by the algorithm. Manicassamy et al. [23] report
a technique known as “gene suppression” for large-scale optimisation problems,
the technique being a means of repairing infeasible solutions, and provide a
demonstration on medium to large knapsack problem instances having 1000 –
20 000 objects and 2 – 5 knapsacks. Cai et al. [24] combine a problem-specific
greedy approach with particle swarm optimisation for large-scale social network
clustering. Kabán et al. [25] propose an estimation of distribution algorithm for
large-scale continuous global optimisation problems, using random projections
to low dimensions to improve scalability. Other mathematical approaches have
also recently shown some success [26].

Cooperative co-evolution [27, 28] has been used on several occasions to
tackle large-scale problems, working with co-evolved sub-populations that tackle
smaller-scale sub-problems. More recently, Yang et al. [29] and Omidvar et al.
[30] developed the use of cooperative evolution, adaptively decomposing a large-
scale problem with unknown separability into simpler sub-problems, and starting
with randomly grouped variables. Li and Yao [31] built on these examples
to develop cooperative co-evolving PSO, where the problem is divided into
subcomponents, the size of which are co-evolved. This was applied successfully
to problems with up to 2000 variables. Sun et al. [32] used cooperative co-
evolution, with an extended differential grouping method to find separable
groups of variables. The method was shown to work well with problems of 1000
variables from the CEC benchmarks. Cooperative co-evolution in combination
with fitness inheritance has also been shown to perform well on problems with
up to 1000 variables [33].

A two-stage approach to large-scale optimisation, different to the SPO method
proposed here, is described by [34] and [35]. The idea is to locate a promising
region of the search space in the first stage, then focus heavily on exploitation
in the second. Adaptive differential evolution has also been found to work well
on continuous optimisation problems with 1000 variables (e.g., [36]).

All of the above research focuses on single-objective problems:, however,
there is some evidence [37, 38] that commonly-used evolutionary multi-objective
algorithms do not scale well with the number of decision variables, emphasising
the importance of techniques which can perform well with larger numbers of
decision variables. As far as the authors are aware, there have been very few
attempts (exceptions being studies by [6–9]) at multi-objective optimisation of
problems with thousands of decision variables. SPO represents a novel approach
to adapting existing multi-objective algorithms for large-scale problems. Furthermore,
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while many of the above approaches to large-scale single-objective problems use
some form of decomposition, these tend to be problem specific (though Antonio
and Coello [7], Qiu et al. [39] use randomised grouping of variables with some
success). An interesting method in [10] used a problem transformation scheme to
reduce dimensionality of search space, whereby weights were applied to decision
variables in groups and these were optimised to approximate the global Pareto
front. Cao et al. [40] proposed a cooperative coevolutionary algorithm for
large-scale multi-objective problems in which variables are grouped according
to their class (e.g., by distance, position or mixed), but the techniques they
used relied upon the decision variables being numeric (discrete or continuous)
to allow exploration of their individual impacts. Furthermore, the approaches
using cooperative coevolutionary methods require a large number of function
evaluations (150 000 to 2 000 000 evaluations for 200–5000 variables). However,
this is impractical for real-world problems such as the one we focus on, where
fitness depends upon some model or simulation rather than a cheap benchmark
function.

In contrast, the SPO approach is generic: as long as separable groups
of decision variables can be identified, it will work. Furthermore, existing
approaches do not consider how variables that are separable for a single objective
become non-separable when considering the objectives together, because the
trade-off involves balancing the contribution to each objective from each of the
sub-problems. SPO overcomes this issue by determining the Pareto-optimal
front for each sub-problem, then combining the best solutions from each sub-
problem to generate optimal solutions for the global problem.

3. Problem definition and solution approaches

3.1. Combinatorially-separable problems

Table 1 lists the algebraic terms used in this section and throughout the rest
of the paper. We consider an additively-separable, single-objective optimisation
problem, with the aim of finding a solution (or configuration) x ∈ X that
minimises some objective function F , where x is a vector of individual decision
variables in the global search space X. .

There exists M independent nonlinear sub-problems G which partition both
the global problem and the global search space, with each independent sub-
problem denoted by G(Xm). Thus the global problem can be expressed as an
additively separable function [41]:

F (X) =

M∑
m=1

G(Xm) . (1)

The additively-separable property means that minimising F (X) is simply a case
of minimising each G(Xm). This is particularly helpful in the case of large-scale
optimisation problems, as the large search space can be dramatically reduced
by consideration of only the sub-problems.
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Variable Explanation
X The global search space of all variables xj, j ∈ {1, 2, ..., J}
|X| The cardinality of global search space, |X| = J
F (X) Global optimisation problem defined over X
N Number of objective functions across F (X)
Fn(X) Individual objective function of F (X), n ∈ {1, 2, ..., N}
x A particular configuration of X representing one solution to

the problem
M Number of sub-problems partitioning X
Xm The independent partition of X covered by sub-problem

m ∈ {1, . . . ,M}
Xmi

A single decision variable in partition Xm, i ∈ {1, . . . , |Xm|}
G(Xm) Sub-problem of F (X) defined over partition Xm ⊂ X
Gn(Xm) Sub-problem of objective Fn(X) defined over an

independent partition Xm ⊂ X
Fm The Pareto-optimal solutions from sub-problem G(Xm)
Y List of integers Ym, each of which acts as a pointer to one

member of each Fm

Ym Index representing the chosen solution for sub-problem m
Y Global solution to F (X) chosen from Y

Table 1: Definitions of variables used in SPO approach

Now consider a multi-objective optimisation problem (MOP), in which we
seek to find the solution, or multiple Pareto solutions x (each x being a configuration
of X), that minimises all N objectives Fn in F , where n ∈ {1 . . . N}. When
each objective Fn shares the same separability, i.e., Fn is a sum of sub-problems
Gn, and each Gn applies to the same subsets Xm of X. This can be expressed
as

Fn(X) =

M∑
m=1

Gn(Xm) . (2)

However, the situation is considerably more difficult for MOPs than for single-
objective problems, even where each objective shares the same separability as
above (which we term combinatorially-separable). When a MOP has conflicting
objectives, multiple solutions will exist for each sub-problem G(Xm), where
G(Xm) is the MOP across all Gn(Xm).

The global problem seeks to apply a value to each of the variables xj ∈ X,
resulting in choosing exactly one solution for each sub-problem G(Xm) (recalling
that X is a concatenation of all Xm). It then follows that the global solution
can be obtained by choosing one solution for each of the sub-problems such
that, when combined together, they strike a balance that minimises the global
objectives.

If the global objectives conflict with each other, this may result in finding a
Pareto front in which each solution has a different combination of solutions to

7



the sub-problems. Since the global search space is the product of the Pareto-
optimal fronts of all the sub-problems, the global Pareto-optimal front cannot
be obtained by only adding the Pareto fronts for the sub-problems. Indeed,
there is no clear concept of what “adding” the fronts for the sub-problems will
result in.

This concept is illustrated using a 2-objective minimisation problem, with
three additively-separable sub-problems. The encoding of the sub-problems
is irrelevant here, all that matters is that they do not overlap in the variable
space. For example, these might be non-overlapping groups of bits in a bit-string
representation. For simplicity, we present three bi-objective sub-problems that,
although they occupy different parts of the global search space, have resulted in
identical objective values for their three sub-problem, Pareto-optimal solutions
A, B and C:

A: ∀m ∈ {1, 2, 3}, F1(Xm) = 5, and F2(Xm) = 1, denoted as solution A(5,1);

B: ∀m ∈ {1, 2, 3}, F1(Xm) = 3, and F2(Xm) = 4, denoted as solution B(3,4);

C: ∀m ∈ {1, 2, 3}, F1(Xm) = 1, and F2(Xm) = 5, denoted as solution C(1,5).

Intuition might say that since all solutions to the sub-problems are Pareto-
optimal, the global Pareto-optimal solutions can be formed as a linear combination
of the sub-problem solutions, with each of the objective values separately formed
according to Equation (1). That is, the global Pareto-optimal solutions are
(AAA), (BBB) and (CCC), which would lie at (3,15), (9,12) and (15,3) in the
objective space. We term these solutions reference points, and refer to the front
formed in this manner as the reference front. However, when we consider the
full set of possible combinations of the sub-problem Pareto fronts, we see that
the reference points are not the global Pareto-optimal front. The full global
search space of 27 is illustrated in Figure 2, “All points”. Of the 27, there are
only 10 unique solutions, the remaining 17 being duplicates.

Figure 2 illustrates that when all 10 unique combinations of solutions for
the global problem are considered, the reference point at (9,12) – BBB – is
dominated. Therefore, even in the specific case that all the sub-problems
are identical, the Pareto-optimal front cannot simply be formed by a simple
combination of all the sub-problem solutions. The global front is still made
up of solutions that contain Pareto-optimal solutions to the sub-problems, but
from different parts of each sub-problem’s front. It follows that considering
the objectives together, the sub-problems are not independent of each other;
i.e. the global problem is no longer additively separable. Rather, we call it
combinatorially-separable. This also means that while the reference front serves
as a guide to the location of the global Pareto-optimal front, the two are not
equivalent. Furthermore, as is far more likely to be the case in practice, if the
Pareto fronts for the sub-problems are not identical, it would be impossible to
construct a reference front in this manner. This is the case in the building stock
problem that we consider as our application.

We now describe two possible approaches to encoding large-scale separable
MOPs. Both approaches are independent of the search algorithm. For simplicity
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9



of the representation, the examples consider the sub-problems to be over binary
variables, but they are applicable to any representation. Note that only high-
level pseudocode of the SPO process is given: we are not proposing new algorithms
but simply an alternative way to formulate or encode combinatorially-separable
large-scale problems.

3.2. Naive approach

One approach might be to consider the sub-problems together in a global
optimisation: here called the naive approach. The overall encoding for the
global problem is a concatenation of the bit-strings for all sub-problems into a
single bit-string:

Y = X1 ∪X2 ∪ . . . ∪Xm (3)

where each XM is a list of variables Xmi ∈ {0, 1}.
Figure 3b illustrates an example global problem comprising 4 sub-problems.

Figure 3a shows the concatenated bit-string for an example global problem,
where the naive encoding results in a global search over 17 bits, labelled x1–
x17. While the naive approach is simple to implement, there are several obvious
problems. Firstly, solutions returned by the optimisation process will almost
certainly contain solutions for individual sub-problems that are not Pareto-
optimal for that sub-problem. This is because the influence of a single variable
on a single sub-problem will only make a small impact on the global objective
values. As a result, there is unlikely to be enough selective pressure to drive
the search towards the global optima for all sub-problems. Secondly, the lack
of domain-specific neighbourhood structure to the search space could impact
negatively on the performance of the optimisation algorithm. Thirdly, handling
any mutually exclusive values for variables or other constraints in each sub-
problem are very difficult to solve at the global scale. This is because feasible
solutions for each sub-problem will need to be found in parallel with the search
for the global Pareto-optimal front. Finally, it ignores the separability of the
problem for each objective, substantially increasing the global search space to
the product of the search space sizes for the sub-problems.

3.3. Sequential Pareto Optimisation (SPO)

An alternative approach is possible that exploits the fact that the sub-
problems are independent (that is, in each objective, the sub-problems are
separable). The problem is divided into two stages. At Stage 1, a search
of the space for each sub-problem, G(Xm), is performed in isolation, with the
Pareto-optimal front, Fm, determined for each sub-problem. The encoding for
Stage 1 is problem-specific: a binary encoding is used in the example shown
in Figure 3 but could, in principle, be anything. If the sub-problem is small
enough, this search can be exhaustive, guaranteeing that the solutions for the
sub-problems are optimal. Were the sub-problems to be larger, they could also
be solved using metaheuristics or another suitable search method.
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(a) Naive approach: exemplar, global problem encoded as a string of 17 bits
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(b) The variables XMm , applicable to each sub-problem G(XM ), and their
respective search space sizes
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(c) Stage 1: exhaustive search across each sub-problem to identify Pareto-
optimal solutions, illustrated using hashed boxes which are then sorted by
one of the objectives ready for Stage 2. Each of these solutions is a specific
assignment of values to the sub-problem variables
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Global problem F(X)

(d) Stage 2: one integer variable is an index identifying a specific
Pareto-optimal solution for each sub-problem. The global solution is a
concatenation of selected solutions for each sub-problem. Here, Y =
(1, 3, 2, 3) which corresponds to a solution x = (00000|1101|10010|111)

Figure 3: An example optimisation problem over 17 binary variables, with the resultant
encodings using the naive approach (Fig. 3a), then grouped into 4 sub-problems (3b), and
SPO (3c, 3d) approach. Each sub-problem operates on a distinct sub-set of variables that
partitions the global problem. With the naive approach, the variables for the sub-problems
are simply concatenated together; with SPO, Stage 1 independently solves each sub-problem,
and Stage 2 assigns a variable to indicate the choice of Pareto optimal solution for each
sub-problem. The global solution is the concatenation of each selected solution for each the
sub-problem 11



Data: F (X), the global optimisation problem
Data: X, The global search space
Data: G, the subproblems of F (X)
Data: M , the number of subproblems partitioning X
foreach m ∈ {1, . . . ,M} do /* Stage 1: solve sub-problems */

Fm ← arg minXm
G(Xm) /* Pareto front of G(Xm) */

Fm =sort(Fm) /* Fm ascending by Obj. 1 */

setDomain(Ym) = {1, 2, ..., |Fm|}
end
Y ← arg minY F /* Stage 2: solve global problem */

return Y
Algorithm 1: The overall SPO procedure

Stage 1 is illustrated in Figure 3c, where each Fm are shown as hashed boxes.
Each Fm comprises several solutions for each sub-problem, G(Xm), and each
solution in each Fm is then assigned an index corresponding to its rank-order
in Fm after sorting (see Figure 3d).

The encoding for the global problem is a vector of M integers (that is, one
integer for each sub-problem):

Y = Y1, . . . , YM , (4)

where each Ym represents an index value pointing to a solution in the Pareto-
optimal front for each sub-problem G(Xm). Stage 2 can be seen as weighing
up which balance of the objectives (i.e., which Pareto-optimal solution) for each
sub-problem should be combined to build up the solution for the global problem.

SPO is summarised in Algorithm 1. SPO is illustrated for our 4-sub-problem
example in Figure 3d. Each of the variables in the global problem (Y 1–Y 4)
represent a “pointer” to one of the Pareto-optimal solutions for each sub-
problem.

SPO has several advantages over the naive approach. Firstly, it reshapes
the problem to be considered over only Pareto-optimal solutions for each sub-
problem. This has the benefit that, once the optimisation run is complete, any
individual sub-problem solution within the final set of solutions is approximately
Pareto-optimal for that sub-problem. Pareto-optimality for the sub-problems
can be guaranteed if the search at Stage 1 is exhaustive or uses an exact
solver. This is particularly important for our application: a homeowner is
unlikely to want a solution that is sub-optimal for their house. Secondly,
the sorting of each Fm also provides an implicit neighbourhood relationship
over the Pareto-optimal solutions for each sub-problem. These have a natural
ordering in terms of the objectives that corresponds to their integer values: in
Figure 3 incrementing the value for any Ym will decrease objective 1’s and
simultaneously increase objective 2’s value. The use of variation operators
designed for manipulating ordered values such as integers or real numbers should
allow the global space to be searched more efficiently than using the naive
approach. Thirdly, constraints at the level of individual sub-problems can
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be considered at the first stage, so the global search only considers feasible
solutions. Fourthly, the overall search space for the global problem is decreased
to the product of sizes of the Pareto-fronts for the sub-problems. Finally, the
objective values obtained for the sub-problems at Stage 1 can be cached in
memory, allowing the global search to be conducted using fast lookups to this
cache rather than re-running potentially costly function evaluations.

4. Optimisation of the housing stock

We now turn to the application that motivates this work, and which will
be used to illustrate the technique. Climate change is a significant issue facing
society today. In addressing the problem, considerable effort is being made to
reduce energy consumption and carbon emissions related to housing, which is
responsible for more than a quarter of total energy consumption in the UK
[11]. The long lifespan of a typical house means that it is important to invest
in reducing the energy demand of existing housing. Improvements include
improved insulation, new heating systems, or renewable energy systems like solar
thermal and photovoltaic cells. Consequently, national and local authorities
seek to maximise improvements to the housing stock using the limited financial
resources at their disposal. This means that efficient optimisation methodologies
for identifying the trade-off between refurbishment costs and the reduction in
energy demand across the housing stock have become crucial.

However, even when houses in the stock are grouped into similar types and
conditions, there can be thousands of groups, each associated with a range of
refurbishment options. As such, the simultaneous optimisation of all houses
results in a very large search space, and one in which the problem objectives
have a very low sensitivity to changes in the refurbishment of a single house,
the low sensitivity making the problem difficult to solve. Furthermore, while
each objective is additively-separable between each house, when considering the
multiple conflicting objectives together, the global problem covering all houses is
not additively-separable (rather, combinatorially-separable). In applied terms,
if money is being spent to improve one house, it cannot be spent on another.
We now show how this problem maps to the generic large-scale optimisation
problem described in the previous section.

4.1. Definition of the building stock optimisation problem

Following the definitions in Section 3, G(X0), . . . , G(XM ) are sets of sub-
problems, each of which corresponds to one house in the stock.

R is the set of all possible refurbishments that can be applied to any house
and, for any given sub-problem, a subset Rm ⊂ R comprises the possible
refurbishments that can be applied. For example, houses with solid walls will not
be suitable for cavity wall insulation, and houses with newly installed heating
systems will not gain any benefit from a boiler replacement.

The naive approach considers all the decisions for potential refurbishments
across all houses together. Domain-specific knowledge introduces a subtle level
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of structure into the search space, in that more refurbishments (that is, more
variables are set to true) means increased cost and lower energy. As noted in
Section 3.2, constraints are more difficult to solve with this approach. Thus to
be able to handle the mutually exclusive options for each house either needs
a variation on the encoding (using categorical values for each of the options),
or a global constraint measure. Furthermore, if any additional constraints are
placed on the search (for example, a threshold on estimated comfort for a house’s
occupants, or a limit on expenditure for refurbishments on any one house), these
will prove very difficult for the global search to solve. This is because there would
be a large number of these constraints (assuming one per house), each of which
would by insensitive to most of the variables in the global problem.

In Stage 1 of SPO, the search is conducted for each sub-problem. Constraints
such as mutually-exclusive refurbishments or summer over-heating risk are considered
at this stage, so that only solutions meeting the constraints are passed to the
next stage as members of a Pareto-optimal front, Fm. Once the Pareto-front
for each house is found, the global search explores the trade-off of investments
between the houses in the stock. Furthermore, the number of potentially long-
running simulations to compute energy consumption and summer over-heating
is reduced: for the example in Figure 3, from a naive approach search space of
131 072 to 88 evaluations at Stage 1 for SPO.

4.2. Naive and SPO encodings

It may be helpful to explain the two approaches in the context of this
application. For the naive approach, each solution is represented by a bit-
string where each bit represents a decision about whether to apply a particular
refurbishment to a particular house. For SPO, at Stage 1, each sub-problem
corresponds to one house. Again, the solutions for the sub-problems are bit-
strings where each bit represents a decision about whether to apply a particular
refurbishment to that house. Each solution applying values to these bits is a set
of refurbishments, a particular strategy for improving the house. The difference
for SPO is that the sub-problem for each house is solved in isolation to all
the other sub-problems. The Pareto-optimal strategies for each house are then
assigned integer IDs. Solutions for Stage 2 are a set of integers, one per house,
to choose the strategy for each house.

4.3. Seeding

It is well known [42–44] that seeding the initial population with known good
solutions can improve the performance of metaheuristics. For both naive and
SPO approaches we can generate seeds that approximate the trade-off between
the objectives. In all runs, we can ensure that at least two solutions are present
in the population: those that minimise one objective and form the ends of
the global Pareto-optimal front. This can be done by combining the minimal
solutions for each objective in turn across all the sub-problems. The ease with
which these can be identified is dependent on the problem and its formulation. In
the case of the housing stock optimisation problem, the minimum cost solution
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Data: Count, number of seeds required
Data: M , the number of sub-problems, G(Xm)
Result: S, set of seeds generated;
S ← ∅;
for c = 1 to count do /* generate Count seeds */

σ = c/(Count+ 1)
Y = newSolution /* instantiate new seed */

for m = 1 to M do /* traverse all sub-problems */

Ym = round(σ ∗ |Fm|) /* round to nearest integer */

Y ← (Y, Ym) /* concatenate solutions */

end
S ← S ∪ Y /* add to set of seeds */

end
Algorithm 2: Method for generating seeds with SPO

corresponds to the base-case (no-refurbishment) scenario, while the maximum
cost solutions can be determined from inspection of the housing stock model
(and corresponds to a scenario close to all possible refurbishment options being
applied to a particular house – with only the poorer of mutually exclusive options
excluded). The method of generating seed solutions between these points then
differs depending on the optimisation approach taken.

For the naive approach, we can use the domain specific knowledge that there
is a reasonably close relationship between the number of bits set true and the
cost objective. This means that seed solutions can be generated by varying the
rate at which bits in the solutions are set true. Rather than the conventional
initialisation method of setting 50% of bits true, some solutions are generated
with 10%, some with 20% and so on. This will produce solutions that ought to
represent increasing refurbishment cost and decreasing total energy use, since,
in this problem, the higher the bit-count the more refurbishment options are
applied, and so the higher the cost. As this method is domain-specific it would
not necessarily apply to another problem.

In contrast, with SPO it is possible to devise a seeding method that spreads
the seeds evenly along the reference front between the objectives. This approach
is formally presented in Algorithm 2. Recall that in the second stage of the
problem, each variable Ym takes an integer in range 0 to |Fm|, a pointer into
the sorted set of Pareto-optimal solutions Fm for each sub-problem G(Xm). To
generate a seed, we start with a value σ, where 0 < σ < 1. We use σ to choose
a value for each Ym from approximately the same part of the Pareto-optimal
front for each G(Xm). In this manner, we produce solutions that ought to lie
near the global Pareto-optimal front.

5. Experiments with a synthetic problem

In this section, we compare SPO and the naive approach, with different
seeding schemes and algorithms for the second stage global optimisation. In
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Figure 4: The exhaustive set of 32 solutions for the base sub-problem, which is duplicated
935 times to create the synthetic problem. Pareto-optimal solutions for the sub-problem are
highlighted with blue circles.

order to test and compare the approaches, we have developed a synthetic version
of the stock optimisation problem consisting of identical sub-problems (each
sub-problem being one house). This was formulated by duplicating a single sub-
problem 935 times (the full housing stock problem studied later has 935 houses).
This sub-problem has 5 binary variables, so the global problem has 4675 binary
variables in total. The Pareto-optimal front of solutions for the sub-problem
contains 11 solutions. Figure 4 shows the set of all 32 possible solutions for the
sub-problem plotted in the objective space, with the 11 Pareto-optimal solutions
highlighted. To allow for simpler analysis at this stage, all 32 solutions for the
synthetic problem are feasible. For reproducibility, the solutions are detailed
in full in the Appendix. Constructing a problem using identical sub-problems
means that we can approximate the region of the global Pareto front by scaling
up objective values for the sub-problem (multiplying each by 935) to create a
reference front in the same way as in Section 3. As noted in Section 3, the
true Pareto-optimal front for the global problem will not perfectly match this
reference front. It will almost certainly have many more solutions between the
members of the reference front, as well as some which may dominate those
in the reference front. However, since some of the solutions at least, will be
globally Pareto-optimal, we use it here as a reference against which to judge the
convergence of the second stage of the SPO procedure.

5.1. Experiments

SPO is an algorithm-independent approach to encoding separable large-scale
multi-objective problems. As such, we compare SPO with the baseline of a
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naive encoding, using two different algorithms to demonstrate the improvement
it offers with both.

Two well-established and popular evolutionary algorithms are used as the
basis for implementing the approaches: the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [45] and the Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D) [46]. NSGA-II selects solutions for reproduction
according to their dominance of other members of the population, using the
“crowding distance” to give preference to solutions in sparsely populated parts
of the objective space. The algorithm is strongly elitist, keeping only the best
solutions in the union of offspring and parents from one generation to the
next. It has been found to perform well in a wide range of application areas.
MOEA/D decomposes the multi-objective problem into many single-objective
problems, with different members of the population allocated to different sub-
problems. When generating a new population, solutions can be restricted to
be only recombined with others that have similar sub-problems. It has also
been applied to a wide range of problems, with particular success in many-
objective problems (as the number of objectives increases, dominance becomes
less effective for distinguishing them).

Each algorithm was applied to the synthetic problem using both the naive
and SPO configurations. For the naive encoding, the algorithms were applied
to a search over a space of solutions represented by 4675 bits. For SPO, Stage
1 was carried out using an exhaustive search on the 32 solutions for each sub-
problem, so that the Pareto fronts for each sub-problem passed to Stage 2
were guaranteed to be optimal. The algorithm (NSGA-II or MOEA/D) then
searched over the Stage 2 problem, where each solution comprised 935 integers.
Each integer represents a choice of one solution from the Pareto front for the
corresponding sub-problem.

The initial population for all runs was seeded with the minimal and maximal
cost solutions. For runs identified as “seeded”, we also included 9 solutions
between these extremes, generated by the methods described in Section 4.3.
An odd number was chosen so that one of the seeds lies at approximately the
midpoint of the trade-off. All remaining solutions in the initial populations
were generated by drawing random values for the variables from a uniform
distribution. Overall this totals eight experimental runs (all combinations shown
in Table 3). Each run was repeated for 30 independent trials using different
random number generator seeds.

The hypervolume measure [47] was computed for the Pareto front output
by each separate run. This is the volume of the space enclosed by the Pareto-
optimal solutions and a reference point, which in these experiments was located
at (21 878 155, 21 037 500), the maximal values for the objectives in the base sub-
problem multiplied by 935. Objective values in the Pareto-optimal fronts were
normalised to between 0 and 1, using the reference point as an upper bound
and the point with (6 913 350, 0) as a lower bound (both being the minimal
values for the sub-problem multiplied by 935). Hypervolume provides a balance
between measuring multiple traits of a Pareto front: convergence to the true
front, solution spread, and extent of the front. Higher hypervolume values are
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Parameter Naive
NSGA-II

Naive
MOEA/D

SPO
NSGA-
II

SPO
MOEA/D

Population size 468 108 495 129
Tournament size 10 n/a 8 n/a
Mutation rate 0.01 0.02/n 0.01/n 0.27/n
Poly. real nm n/a n/a 98.83 10.64
Crossover rate 0.30 0.29 0.70 0.47
C gene rate 0.54 0.14 0.71 0.81
C SBX nc n/a n/a 0.98 0.09
Max evaluations 500 000 500 000 500 000 500 000

Table 2: Algorithm parameters, as chosen by SMAC runs with each algorithm variant

desirable.
Besides the approach taken to the global problem and the presence of seeding,

other implementation details for the algorithms were as follows. Selection of
parents for recombination and variation was as in the original papers describing
each algorithm [45, 46]. NSGA-II used tournament selection to choose pairs
of solutions. MOEA/D used the immediate neighbourhood of solutions (that
is, solutions representing neighbouring decomposed sub-problems). Runs were
terminated after 500 000 unique solutions had been evaluated. Algorithms using
the naive approach with binary encoded solutions had uniform crossover [48]
for recombination and bit-flip mutation for variation. Algorithms using SPO
with integer encoded solutions had simulated binary (SBX) crossover [49] and
polynomial real mutation [50]. Recombination was applied to a given pair of
solutions according to a fixed probability. Variation was applied to all solutions
generated, with a fixed probability on each variable.

So that the comparisons were fair, the parameters for each algorithm configuration
were tuned using Sequential Model-based Algorithm Configuration (SMAC)
[51], aiming to maximise hypervolume, with each algorithm limited to 30 000
evaluations. SMAC uses models based on random forests to estimate likely good
configurations. These models are refined as more configurations are tested, until
no further improvement can be found or a cap on computational time is reached.
In our experiments, the reference Java implementation1 was used. The resulting
parameters are given in Table 2. The ‘mutation rate’ is the probability of a
single variable being changed. The ‘crossover rate’ is the probability that a pair
of solutions have crossover applied. ‘C gene rate’ is the probability that, when
crossover is being applied, a single variable is crossed (either swapped for binary
encoding or blended for integers using SBX). ‘Poly. real nm’ and ‘C SBX nc’
are the distribution indices for polynomial real and SBX crossover respectively.

1http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
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Naive NSGA-
II

Naive
MOEA/D

SPO NSGA-II SPO
MOEA/D

Unseeded 0.76610.0008 0.51770.0074 0.80390.0004 0.75050.0021
Seeded 0.76820.0009 0.59200.0038 0.81220.0001 0.75800.0023

Table 3: Hypervolumes for synthetic problem. These are means over 30 independent runs,
with standard deviations given in subscript. Higher values are preferable.

5.2. Results

Table 3 gives hypervolumes for the eight algorithm configurations. An
ANOVA applied to the hypervolumes for each algorithm found a p-value of
< 0.001, rejecting the null hypothesis that there is no statistically significant
difference between the groups. A post-hoc Tukey’s HSD Test [52] was performed
on these results to test for significance in the difference of the means between
the configurations. It returned a p-value of < 0.001 for all pairs (rejecting
the null hypothesis that there is no statistically significant difference), with the
exception of Naive NSGA-II unseeded vs. Naive NSGA-II seeded, for which
p = 0.193.

Figure 5 shows summary attainment curves [53] for the different algorithm
configurations. For each, the median attainment curve (that is, the front in the
objective space reached by at least half of the repeat runs of the algorithm) is
shown as a solid or dashed line. Around this line is a shaded area in the same
colour, bounded by the minimal and maximal attainment curves (reached by
only one repeat run and by all repeat runs respectively). These are intended to
illustrate the spread of results found by each algorithm. The straight lines that
are parallel to the axes in the fronts for MOEA/D represent gaps in the fronts
returned by each run, leaving large parts of the objective space unreached. It is
also worth noting that at the minimal O1 (energy) / maximal O2 (cost) end of
the seed solutions, the SPO seeds dominate the naive seeds. This is because, as
illustrated in Figure 4, the minimal energy solution is not the maximal cost
“do everything” scenario. Some of the refurbishments conflict, resulting in
increased energy use. In contrast, both sets of seeds have a common minimal O2
(cost) solution, corresponding to the minimal O2 (cost) / maximal O1 (energy)
solution in the sub-problem. We can also see that the seeds for the naive
approach are inferior to those for SPO. This is because the combination of sub-
problems into one global problem means that the variables set true are evenly
distributed across the sub-problems. The solution to each sub-problem may be
at a different point in its own search space: some will be low-O1 (energy), some
low-O2 (cost), and this will average out across the global problem, minimising
neither. The scheme to generate seeds for SPO ensures that the solutions to
all sub-problems are at a similar point within their sub-problem level Pareto-
optimal fronts, improving the overall values at the global level for each seed.

There are three clear conclusions from these results. Firstly, SPO offers
a marked improvement over the naive approach in the Pareto-optimal fronts
obtained. Secondly, seeding the initial population is also crucial to obtaining
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Figure 5: Summary attainment curves for the eight algorithm configurations on the synthetic
problem. The dashed/solid lines represent the median attainment curve (the region of
objective space reached by half of the runs). The shaded area around each line shows the
variation in the runs: the upper extent of shading being the front reached by all runs, and the
lower extent of shading being the front reached by only one of the runs. Also shown are the
seed solutions for both approaches.

a good set of final solutions, particularly for NSGA-II. The seeds for SPO also
appear to be a better starting point for the search. Thirdly, it would also
appear that NSGA-II outperforms MOEA/D for this problem, and produces
more consistent results. The first two conclusions are as we would expect. The
reduced overall search space and re-encoding mean that searches using SPO
are more efficient. The seed solutions also give any search algorithm a head
start, with a population that is closer to the true Pareto-optimal front. It is,
perhaps, unexpected that MOEA/D shows such poor performance with respect
to NSGA-II, when it has proven highly competitive for many other problems
[46, 54, 55]. In the next section, we consider what causes the poor performance
of MOEA/D relative to NSGA-II in more detail.

5.3. Improving the performance of MOEA/D

To understand why NSGA-II performs better than MOEA/D, we consider
what drives the search in both algorithms. MOEA/D decomposes the multi-
objective problem into scalar (single objective) problems, each a weighted sum
of the objectives, distributed between extremes minimising only one objective.
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Figure 6: Recombination of a seed and a randomly generated solution.

Each member of the population is associated with one scalar problem. New
solutions are generated by recombining neighbouring solutions (those having
a small Euclidean distance between their weight vectors), and are retained
if they improve their scalar problem. This does not necessarily mean that
they dominate the solutions that they replace, and no test for dominance is
made. Overall, this spreads the solutions evenly along the trade-off between
the objectives, and works well for problems with many objectives where most
solutions tend to be non-dominated. In contrast, NSGA-II generates new solutions
by recombining solutions from throughout the population, with a bias towards
non-dominated and uncrowded solutions. Non-dominated sorting is applied to
the combination of the population and the newly generated solutions, with only
the top-ranked half being retained for the next generation. This rapidly pushes
the population towards consisting entirely of non-dominated solutions, and only
solutions which dominate part of the existing population are likely to be kept.

Two characteristics of MOEA/D are of relevance: the lack of dominance
checking, and the allocation of the initial solutions to scalar problems. To
explain these further, we consider several scenarios for MOEA/D, illustrated in
Figures 6 and 7. Solutions are rendered as black circles, plotted in the objective
space (the objectives being O1 and O2 for simplicity). The scalar problem for
each solution is represented by an arrow showing the weights applying to both
objectives. Solution A has been assigned to the scalar problem with weights
(O1 = 1, O2 = 0), B to (O1 = 0.75, O2 = 0.25), C to (O1 = 0.5, O2 = 0.5), D
to (O1 = 0.25, O2 = 0.75) and E to (O1 = 0, O2 = 1).

Lack of Dominance checking. In Figure 6, seed solutions A and B have
been recombined to generate solutions C and D. Solution C has a lower value for
X, and so takes the place of solution A for the scalar problem (O1 = 1, O2 = 0).
Solution D offers an improvement in both objectives over B, so takes the place
of B for the scalar problem (O1 = 0.75, O2 = 0.25). This means that the seed A
would be lost, despite not being dominated by either of the two newly created
solutions. In contrast, NSGA-II would keep A and C, the two non-dominated
solutions of the four. Zhang and Li [46] do note that an external population
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(a) Random starting population. (b) Population after several generations.

(c) Seeded starting population, randomly
allocated to scalar problems.

(d) Seeded starting population, each
allocated to closest scalar problem.

Figure 7: Placement of seed and randomly generated solutions for MOEA/D.

could be maintained to keep non-dominated solutions resulting from the whole
search. This would prevent the seed solution being lost from the final output
of the search but, without a mechanism to reinsert a solution from the external
population into the main population, the search will still be impeded by the loss
of A from the main population.

Allocation of the initial solutions to scalar problems. Figure 7a shows
a randomly generated population, with solutions assigned to scalar problems
at random. After many algorithm iterations, the solutions will spread out
towards the global Pareto-optimal front (Figure 7b). Figure 7c shows an initial
population of seed solutions, allocated to scalar problems at random. The seeds
extend over a wide area of the objective space, so some solutions must move a
long distance to reach the part of the Pareto-optimal front that minimises their
scalar problems. For a large-scale problem like building stock optimisation this
movement consumes many iterations of the algorithm because changing a single
variable has a tiny impact on the objectives. Relocating the seed solutions so
that they are allocated to more appropriate scalar problems (Figure 7d) will
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reduce the need for this movement, allowing the algorithm to immediately start
improving on the seeds. This can be achieved by allocating to each scalar
problem the seed which minimises the weighted sum of objectives for it, which
we will consider later in this section.

Effect on the synthetic problem. Figure 8 illustrates the population
of one run each of MOEA/D and NSGA-II on the synthetic problem. The
figure shows the initial population, and that after the first and tenth generations
for both algorithms, plotted in the objective space2. Black points show the
current population, with red points for previous generations (lighter red being
older). There are more points for NSGA-II because of the larger population size
following parameter tuning. The seeds are spread out along a trade-off between
the two objectives, and the randomly generated solutions are clustered in one
region, dominated by the seed solutions. Due to the lack of dominance checking
when generating new offspring, many of the seeds are lost by MOEA/D and the
population as a whole reduces in optimality within the first ten generations. In
contrast, while NSGA-II keeps some of the randomly generated solutions, many
are lost in the first two generations because they are dominated by the seeds,
which are all kept. NSGA-II proceeds to fill the gaps between the seeds, and
further optimise the front as solutions which dominate them are found.

An obvious solution to the loss of seed solutions by MOEA/D is to use only
seeds for the initial population. MOEA/D was re-run with an initial population
comprising only 129 seed solutions, again stopping after 10 iterations. The seeds
were duplicates of the 11 used previously, created using the method in Section
4.3. Figure 9 shows the population after the first and tenth generations as before;
the initial population is omitted because it appears identical to Figure 8a. The
population now remains closer to the seeds because there is no draw towards
randomly generated solutions, but there is still some loss of non-dominated
solutions. This is because of the other issue discussed above, random allocation
of the seeds to scalar problems means that iterations are wasted as seeds move
towards the “correct” locations. The result is that by the tenth generation,
solutions at the extremes of the front have been lost (red rather than black),
and several solutions in the middle of the front lie at positions dominated by
the seeds.

Having performed this analysis, we reran the 30 repeats of SPO MOEA/D
using two modifications. The initial population for each run comprised 129 seed
solutions, and no randomly generated solutions (leaving the only remaining use
of random numbers being the variation and recombination operations). The
seeds were relocated to the scalar problem that they achieved the lowest value
for. The results from these runs were compared with those of NSGA-II and the
original version.

Table 4 gives the mean hypervolume over the 30 runs, with the figures for

2Animations showing the convergence over the full run of both algorithms are available
from
http://www.cs.stir.ac.uk/~sbr/stockopt/
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(a) MOEA/D initial generation. (b) NSGA-II initial generation.

(c) MOEA/D after generation 1. (d) NSGA-II after generation 1.

(e) MOEA/D after generation 10. (f) NSGA-II after generation 10.

Figure 8: Early stages of the search for MOEA/D and NSGA-II, showing that MOEA/D
spreads evenly among the population and NSGA-II has a strong bias towards the non-
dominated solutions. Black points are the current generation, red shaded points are all
previous generations.
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(a) MOEA/D initial generation. (b) MOEA/D after generation 10.

Figure 9: Early stages of the search for MOEA/D, having used only seed solutions for the
initial population. Less ground is lost because there are no randomly generated solutions to
pull the whole population back, but progress is still less rapid than for NSGA-II, as MOEA/D
tries to better distribute solutions along the Pareto-optimal front. Note, the red points in
generation 1 are completely covered by black points, because all seeds have survived to the
second generation.

Variant Hypervolume
NSGA-II 0.81220.0001
Original MOEA/D 0.75800.0023
MOEA/D with 129 seeds 0.80640.0005
MOEA/D with 129 seeds, and relocation 0.80400.0003

Table 4: Hypervolumes for variations of MOEA/D on the synthetic problem, with previous
results for seeded SPO MOEA/D and NSGA-II reproduced for comparison. As in Table
3 These are means over 30 independent runs, with standard deviations given in subscript.
Higher values are preferable.

the original MOEA/D and NSGA-II reproduced for convenience. An ANOVA
found p < 0.001; Tukey’s HSD test for significance on the differences in these
means found p < 0.001 for all pairs of algorithms. Thus, we can reject the
null hypothesis that there is no statistically significant difference between the
groups. Figure 10 shows the summary attainment curves for the revised version
of MOEA/D. It is clear that only using seeds for the initial population makes
a substantial difference to the performance of the algorithm. The amended
approach produces fronts much closer to those coming from NSGA-II, even
improving on them slightly around the knee point. These observations on the use
of seed solutions should be noted when using MOEA/D for other applications.
However, for this specific problem, there is still greater variation in the fronts
produced by MOEA/D than for NSGA-II. They are mostly dominated by those
from NSGA-II, resulting in slightly, but still significantly, lower hypervolumes.
For these reasons, we will use SPO NSGA-II with seeding for application to the
larger scale and full real-world problems in the rest of the paper. It should be
noted that a recent development, MOEA/DD [56], incorporates dominance and
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Figure 10: Summary attainment curves for the variants of MOEA/D, with those for the
original MOEA/D and NSGA-II copied for reference. As before, the dashed/solid lines
represent the median attainment curve (the region of objective space reached by half of the
runs). The shaded area around each line shows the variation in the runs: the upper extent of
shading being the front reached by all runs, and the lower extent of shading being the front
reached by only one of the runs. Also shown are the seed solutions for SPO.

decomposition in the MOEA/D framework and may resolve the issues discussed
above. However, the primary focus of this study is on the difference between
the naive approach and SPO, so this is not considered further here.

6. Further experiments with synthetic problems

6.1. Additional synthetic problems

To draw more general conclusions, we repeat the experiment from the previous
section by generating 10 further synthetic problems using exemplar houses in
the CHM data. As before, the sub-problem representing one house is duplicated
935 times to create the global problem. The specific houses are identified in
Table 5. For each of the problems, the duplicated sub-problem has 5 binary
variables (i.e., 32 variants), so the global problem has 4675 binary variables in
total. The Pareto-optimal front of solutions for the sub-problem vary from 6
to 18 solutions. These problems are not replicated in full in the paper, but are
available at the URL given at the end of the paper. The lower and upper bounds
(min and max values found over all runs) used for normalising the objectives
prior to computing hypervolume were (1 770 728, 26 993 766) for energy and (0,
27 712 000) for cost.

The algorithms were applied to each problem without further tuning. Algorithm
parameters were as given in Table 2; but the improved version of MOEA/D from
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Problem House ID Solutions in Pareto-
front for 1 house

1 G1531103 15
2 G1543406 6
3 H1454110 8
4 H1461214 9
5 H1463202 12
6 H1464204 18
7 H1493210 16
8 H1494209 10
9 H1494401 14
10 H1494409 13

Table 5: Base houses used for additional 10 synthetic problems.

Section 5 was used, with 129 seeds and relocation. The mean hypervolumes of
30 runs of each algorithm on each problem are given in Table 6.

As before, an ANOVA applied to the hypervolumes for each algorithm found
a p-value of < 0.001, rejecting the null hypothesis that there is no statistically
significant difference between the groups for all 10 problems. A post-hoc Tukey’s
HSD Test was performed on these results to test for significance in the difference
of the means between the configurations. For each problem, it returned a p-value
of < 0.001 for all pairs (rejecting the null hypothesis that there is no statistically
significant difference), with the exception of the groups of algorithms identified
by * and 9.

For all problems, NSGA-II with SPO and seeding was found to return
the fronts with the highest hypervolumes, though occasionally MOEA/D with
SPO and seeding produced hypervolumes that were not significantly different
to NSGA-II. In all cases, seeding improved every algorithm variant, and SPO
outperformed the naive encoding.

6.2. Larger-scale synthetic problem

In order to test how well our approach scales to larger problems, we scaled
up the synthetic problem from Section 5. As for the smaller version of the
problem, a representative sub-problem3 was selected. This has eight applicable
refurbishment options, two of which are mutually exclusive. Thus each sub-
problem has 128 possible solutions, of which 18 are non-dominated. The sub-
problem was duplicated 9350 times, ten times the number in the previously
examined problem, resulting in a global optimisation problem over 74 800 binary
variables.

NSGA-II with the SPO encoding and seeds were applied to this problem,
using the same parameters as in Table 2. Strictly speaking, the parameters

3Specifically house ID G1461110 in the Cambridge Housing Model [57]
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Figure 11: The median attainment curve for SPO NSGA-II with seeding on the large-scale
problem, with the minimal and maximal attainment curves shown by shading, and the original
seeds marked as points.

ought to be retuned for the new problem, but here our main concern is scalability
of the approach rather than comparisons across algorithms, retuning was not
applied. Figure 11 shows the attainment surfaces with respect to reference front.

The results are highly consistent over all 30 runs, the minimal and maximal
attainment curve showing very small variation on the median curve. Several of
the seeds are dominated by the fronts, while some seeds have proven difficult
to improve on much. Most search effort has been spent on filling in the gaps
between the seeds, providing useful information about the trade-off between
applying refurbishments to different houses. These results demonstrate that
SPO can scale to a much larger problem, though further testing is needed
to gain much insight into general scalability. This is also important for our
application area since, as more effort is put into finding ways of refurbishing the
existing housing stock, there will be a larger number of possible refurbishments
per-house, and a larger number of houses for which refurbishments are possible.
Both factors will mean that the scale of the real-world building stock optimisation
problem will tend to increase.

7. Application to the full housing stock optimisation problem

We now consider a full real-world instance of the housing stock optimisation
problem: optimisation of refurbishment options for the housing stock in the
North-East of England. Data for these houses is taken from the English Housing
Survey (EHS) [12], an annual survey commissioned by the UK Government. The
survey data contains detailed information on the condition and energy efficiency
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Refurbishment Cost
(£)

Cavity wall insulation (CWI) 500
Loft insulation (Loft) 250
Double glazing (DG) 5000
Condensing boiler (Cond) 2500
Solid wall insulation (SWI) 8000
Air source heat-pump (ASHP) 7000
Ground source heat-pump (GSHP) 10000
Biomass heat (BH) 10000
Photovoltaic cells (PV) 8000
Solar hot water (SHW) 2000

Table 7: Refurbishment options and costs. Abbreviations shown in brackets are used later in
the paper.

for housing throughout England. This includes: age band; dwelling type; region;
dimensions; window area and glazing type; wall, roof and floor construction; loft
and other insulation; and built form. There are 935 houses in the EHS for the
North-East region of England. In practice, each “house” represents several
hundred real houses of a similar type, age and refurbishment state: the 935
houses represent 1.2 million homes in reality. For simplicity we refer to these as
single houses.

The EHS data for 2009 is embedded in the Cambridge Housing Model (CHM)
[57]. This is coupled to a SAP-based energy calculator [58], to estimate energy
consumption and CO2 emissions for all homes in England, broken down by final
use. Some earlier work with a smaller stock optimisation problem used a more
time-consuming, dynamic energy model [15, 16, 59]. The dynamic model is
not used here because it currently models a limited number of house types and
refurbishment options. In estimating the costs, there is no single source of cost
information that covers all retrofit measures and the range of cost values varies
between different sources [60]. Table 7 shows the 10 refurbishment options that
are considered in this problem, with their associated costs; the costs have been
obtained from various sources, predominantly [61] and [62]. The full model
of cost and energy use for houses with the different refurbishments applied is
available from (URL TBC on paper acceptance).

Note that not all 10 refurbishments are applicable to all houses. For example,
some houses already have loft insulation installed, or have solid rather than
cavity walls. The rules used to determine where refurbishments could be applied
are listed in Table 8. Condensing boiler, ground source heat-pump (GSHP),
air source heat-pump (ASHP), and biomass boiler are mutually exclusive, but
dwellings are allowed to have both solar hot water (SHW) and photo-voltaic
(PV) panels. Of the 10 possible refurbishments, the number applicable to
any one house within the stock ranges from 2 - 8. Overall, there are 4424
individual decisions about whether or not to apply a particular refurbishment
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Refurbishment Eligibility Rules
Cavity wall insulation Unfilled cavity wall
Loft insulation increased
to 300mm

Loft insulation < 250mm

Double glazing <100% double glazed; if pre-1850, secondary glazing
only

Condensing boiler Non-condensing boiler; all houses in town centres
Solid wall insulation Uninsulated solid wall
Air source heat pump All dwellings
Ground source heat pump All detached houses, semi-detached houses not in

town centres, terraced houses in villages and hamlets
Biomass heat All houses without gas, detached houses not in town

centres, all houses in villages and hamlets
Photovoltaic cells All dwellings with a roof and built after 1850
Solar hot water All dwellings with a roof and built after 1850

Table 8: Refurbishment options and the rules for determining the dwellings to which they
might be added.

to a particular house, an average of 4.73 per house over the 935 houses. After
considering mutually exclusive options, there are 27 150 house variants, these
including the un-refurbished and all possible refurbished states for each house;
this gives an average of 29 states for each house.

Running an exhaustive search at Stage 1 of the optimisation revealed that
there were between 2 and 34 Pareto-optimal solutions for each house, and 10 777
in total across all houses (an average of 11.52 per house).

Given that NSGA-II has proved to be the most robust of the two algorithms
for this class of problem, we now apply only the SPO NSGA-II with seeding to
Stage 2 of the full stock problem (using the same parameters as in Table 2).
The global Pareto-optimal front found by the algorithm is given in Figure 12.
Along the length of the front, the solutions found represent an improvement on
the seeds. In the middle of the front, these offer a saving 20% of the cost of the
seed solutions having same energy use.

Figure 13 shows the trends in application of refurbishments along the length
of the Pareto-optimal front. Here, the solution numbers run from 0 (the base-
case zero-cost scenario) to 494 (the minimum-energy / maximal-cost scenario).
Loft insulation rises sharply at the start and at the end, probably because
different levels of insulations already exist in the current housing stock. The
early changes will be from 0/12mm up to 300mm, which are very cost effective,
whereas the changes from 250-300 mm are much less cost effective and so these
will only be optimal at the higher cost end.

Cavity wall insulation rises steadily from the start along the length of the
front. Solid wall insulation, on the other hand, only starts to appear from two
thirds (around 335) along the front, due to its high cost and relatively small
savings. Double glazing shows a similar trend.
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Figure 12: The Pareto-optimal front for the full real-world stock optimisation problem, found
by NSGA-II using SPO.

Use of condensing boilers rises steadily from the start but drops to nearly zero
around solution 350. This indicates, at the higher end of refurbishment costs,
all condensing boilers are being replaced by systems with higher efficiencies,
e.g. ASHP or GSHP. ASHP shows the most prominent growth among all
the options starting from the low cost end, to the highest point at about 850
installations, but drops slightly at the high cost end of the trade-off to around
800 installations. In contrast, GSHP only starts to appear towards to mid-point
of the trade-off (solution no. 250), and continue to rise to approximately 100
installations. There are two reasons for this. Firstly, the cost for installing a
ASHP is much cheaper than a GSHP, although the coefficient of performance
for a ASHP is slightly lower than that of a GSHP. Secondly, the installation of
a GSHP is limited by the rules for refurbishments. As stated in Table 8, GSHP
only allowed for all detached houses, semi-detached houses not in town centres,
and terraced houses in villages and hamlets.

PV starts to rise sharply at two third of the length (around solution no.
335), and it continues to rise to its highest point at the high-cost end of the
front, to more than 800 installations. This indicates that, although expensive,
PV is a cost-effective option when the capital allows for it.

SHW shows an interesting trend along the front. It rises from the low-cost
end of the trade-off to its first plateau at solution no. 200, then drops to a low
point at solution no. 278, and rises again to its second plateau at solution no.
400, and finally continues to drop to nearly zero at the high-cost end. This is
correlated with the provision of hot water. As hot water systems become more
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Figure 13: The trends of individual refurbishment options along the length of the Pareto-
optimal front. Each point shows the number of houses in the stock with a particular
refurbishment applied, for a given solution in the Pareto-optimal front. To the left are solutions
at the low-cost end of the front, to the right are solutions at the low-energy end of the front.
Biomass heat is not plotted as it was zero for all solutions in the front.

efficient, the energy used in producing the hot water reduces, this decreasing
the saving due to solar hot water. As SHW only impacts on the energy use, it
therefore becomes cost-ineffective and falls out of the optimal solutions.

It is worth noting that no biomass boiler is found in the Pareto-optimal
solutions. Biomass is probably excluded as the boiler is as expensive to buy as
a GSHP, but will have a lower “efficiency” than the GSHP – and hence will be
sub-optimal in energy use.

8. Conclusion

We have presented Sequential Pareto Optimisation (SPO), a two-stage approach
to encoding separable large-scale multi-objective problems, such as optimisation
of the housing stock. This uses a unique decomposition of the global problem
into two stages. There has previously been very little work on multi-objective
optimisation for problems with thousands of variables, and none on the optimisation
of buildings at the regional stock scale. This represents a new category of
problem which we term combinatorially-separable; the synthetic problems we
have generated represent a new set of benchmarks sharing this property. SPO
implementations using NSGA-II and MOEA/D for the second stage were applied
to two sizes of synthetic optimisation problem. This was compared to a naive
approach using a single stage and a binary encoding, which was found to perform
poorly. NSGA-II performs better than MOEA/D for this problem, resulting
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in Pareto-optimal fronts which largely dominate those of MOEA/D. We have
shown that the performance of MOEA/D can be improved by using only seeds
in the initial population, with relocation of the seeds to closely matching scalar
sub-problems. These observations should be noted when using MOEA/D for
other applications. Seeding the population was shown to greatly improve the
final results for both algorithms.

We applied SPO using NSGA-II to a real-world housing stock optimisation
problem and conducted some analysis of the results from an applied perspective
to show how this may be used in practice. These results are important: this
method can be used to allow decision makers to make better-informed choices in
targeting refurbishments to the housing stock. This has the potential to make
a significant impact on the energy consumption and related emissions.

This work has also opened up three additional lines of future research, which
will make the SPO approach more general.

Firstly, the present work has proven the concept for a problem with known
separability. Of course, where such characteristics of a problem are known, they
should be exploited by the algorithm designed; a growing field termed Grey-
box optimisation [63], where known structures in problems such as boolean
satisfiability can be exploited for substantial efficiency gains. There are few
examples of real-world multi-objective problems that have this property. For
this to be the case an application will be like the housing stock problem where
there are two scales: sub-problems where there is a trade-off, but these sub-
problems interact at the global scale. Another example is employee scheduling
[13], where regions might be scheduled to both meet the target workload and
minimise the required workforce; but increasing the workforce in one region will
require a reduction in the workforce for another. Identification and classification
of such problems is an interesting direction to pursue. Additionally, often
features like separability are unknown. It will be of interest to consider integrating
approaches for detecting separability in the objectives automatically based on
linkage detection, similar to the approach of [8], or random grouping [7, 39].

Secondly, with the additively-separable problems described in this paper,
the sub-problems have small enough search spaces that they can be explored
exhaustively. It would be interesting to consider much larger search spaces for
the first stage of the process. In terms of the housing application, this means a
larger number of options per-house, or collected groups of houses (for example,
with shared facilities such as community heating systems). This could be tackled
by using a non-exhaustive search method (perhaps a second metaheuristic) in
Stage 1, before proceeding to the integer-encoded global optimisation over the
Pareto-optimal fronts for each house in Stage 2.

Thirdly, expansion of the method to more than two objectives can also be
considered. Focussing on two-objective optimisation means that the Pareto-
optimal solutions for each sub-problem can be sorted into ascending Objective
1 / descending Objective 2. This yields a natural ordering over the Pareto-
optimal solutions for each sub-problem so they could be translated to integers
for the Stage-2 optimisation, and regular integer variation operators could be
used. This means that, for one sub-problem, changing the index by a small

34



amount should lead to a small change in the objectives and changing it by a
large amount should result in a larger change in the objectives. This respects
the proximate optimality principle [64]. Extending the approach to three and
many-objective problems would need the following modifications. Stage 1 would
remain the same: an exhaustive or efficient search over the space for each sub-
problem, to find a Pareto-optimal front for each sub-problem. At Stage 2,
new mutation and crossover operators would need to be chosen that respect
the shape of the Pareto-optimal surface per sub-problem. For two objectives
it is possible to use operators that respect the natural ordering of integers
to efficiently explore 2-objective Pareto fronts for the sub-problems. Pareto-
optimal surfaces for 3-objectives and higher would need new operators that can
“walk” in the neighbourhood of similar Pareto-optimal solutions in the surface.

Exploration of these latter issues will lead to a more general framework for
large-scale optimisation, building on this paper’s work to develop a method that
works for many-objective problems with a much lower degree of separability
than the house stock optimisation problem. This will have the potential for
application in a variety of other application domains.
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Appendix: Synthetic problem

The synthetic problem is based on house “H1501108” in the Cambridge
Housing Model data. This house is representative of the “average” house in the
stock in two ways. It has 5 refurbishment options, close to the average number
per house in the whole stock of 4.73. This means that over the whole stock,
the synthetic problem has 4675 decisions about whether or not to particular
refurbishments to individual houses. The Pareto-optimal front of solutions for
house H1501108 contains 11 solutions, also close to the average for the stock of
11.53. Additionally, all of the options apply, so all 32 solutions for the house
are feasible, making analysis simpler.

The full set of solutions for this house are given in Table 9. The full problem
is formed by duplicating the 5 refurbishment options 935 times. Objective
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evaluations for the full stock simply sum the objective values for the separate
houses. The Pareto-optimal solutions for each sub-problem are identified by
a non-zero Pareto Index (which ascends with O1). For Stage 2, the decision
variables for the global problem select solutions at the sub-problem level based
on this index.
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X0 X1 X2 X3 X4 O1 O2 Pareto Index
0 0 0 0 0 23399.09617 0 10
1 0 0 0 0 20277.82204 500 9
0 1 0 0 0 22270.98959 5000 -
1 1 0 0 0 19093.89017 5500 -
0 0 1 0 0 9787.96717 7000 6
1 0 1 0 0 8878.598432 7500 5
0 1 1 0 0 9464.11987 12000 -
1 1 1 0 0 8534.231879 12500 3
0 0 0 0 1 19793.33607 2000 8
1 0 0 0 1 17103.94735 2500 7
0 1 0 0 1 18829.17604 7000 -
1 1 0 0 1 16097.72663 7500 -
0 0 1 0 1 9461.298231 9000 -
1 0 1 0 1 8551.85455 9500 4
0 1 1 0 1 9137.796621 14000 -
1 1 1 0 1 8207.866941 14500 2
0 0 0 1 0 22258.82169 8000 -
1 0 0 1 0 19137.54756 8500 -
0 1 0 1 0 21130.7151 13000 -
1 1 0 1 0 17953.61569 13500 -
0 0 1 1 0 8647.692686 15000 -
1 0 1 1 0 7738.323949 15500 1
0 1 1 1 0 8323.845387 20000 -
1 1 1 1 0 7393.957395 20500 0
0 0 0 1 1 19584.13113 10000 -
1 0 0 1 1 16894.74241 10500 -
0 1 0 1 1 18619.97111 15000 -
1 1 0 1 1 15888.5217 15500 -
0 0 1 1 1 9252.093294 17000 -
1 0 1 1 1 8342.649612 17500 -
0 1 1 1 1 8928.591684 22000 -
1 1 1 1 1 7998.662003 22500 -

Table 9: All solutions for one house within the synthetic problem. In terms of the application,
variables X0 - X4 map to Cavity Wall Insulation, Double Glazing, Air-source Heat Pump,
Photovoltaic Cells and Solar Hot Water respectively. O1 and O2 are the energy and cost
objectives.
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