Please use this identifier to cite or link to this item:
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Limitations to Starch Utilization in Barramundi (Lates calcarifer) as Revealed by NMR-Based Metabolomics
Author(s): Palma, Mariana
Trenkner, Lauren H
Rito, Joao
Tavares, Ludgero C
Silva, Emanuel
Glencross, Brett D
Jones, John G
Wade, Nicholas M
Viegas, Ivan
Keywords: Asian seabass
hepatic glycogen
Issue Date: 2020
Citation: Palma M, Trenkner LH, Rito J, Tavares LC, Silva E, Glencross BD, Jones JG, Wade NM & Viegas I (2020) Limitations to Starch Utilization in Barramundi (Lates calcarifer) as Revealed by NMR-Based Metabolomics. Frontiers in Physiology, 11, Art. No.: 205.
Abstract: Practical diets for commercial barramundi production rarely contain greater than 10% starch, used mainly as a binding agent during extrusion. Alternative ingredients such as digestible starch have shown some capacity to spare dietary protein catabolism to generate glucose. In the present study, a carnivorous fish species, the Asian seabass (Lates calcarifer) was subjected to two diets with the same digestible energy: Protein (P) – with high protein content (no digestible starch); and Starch (S) – with high digestible (pregelatinized) starch content. The effects of a high starch content diet on hepatic glycogen synthesis as well as the muscle and liver metabolome were studied using a complementary approach of 1H and 2H NMR. The hepatosomatic index was lower for fish fed high starch content diet while the concentration of hepatic glycogen was similar between groups. However, increased glycogen synthesis via the direct pathway was observed in the fish fed high starch content diet which is indicative of increased carbohydrate utilization. Multivariate analysis also showed differences between groups in the metabolome of both tissues. Univariate analysis revealed more variations in liver than in muscle of fish fed high starch content diet. Variations in metabolome were generally in agreement with the increase in the glycogen synthesis through direct pathway, however, this metabolic shift seemed to be insufficient to keep the growth rate as ensured by the diet with high protein content. Although liver glycogen does not make up a substantial quantity of total stored dietary energy in carnivorous fish, it is a key regulatory intermediate in dietary energy utilization.
DOI Link: 10.3389/fphys.2020.00205
Rights: © 2020 Palma, Trenkner, Rito, Tavares, Silva, Glencross, Jones, Wade and Viegas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY - The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Licence URL(s):

Files in This Item:
File Description SizeFormat 
fphys-11-00205.pdfFulltext - Published Version2.57 MBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.