Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30320
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrooks, Chrisen_UK
dc.contributor.authorHoepner, Andreas G Fen_UK
dc.contributor.authorMcMillan, Daviden_UK
dc.contributor.authorVivian, Andrewen_UK
dc.contributor.authorWese Simen, Chardinen_UK
dc.date.accessioned2019-10-24T00:05:53Z-
dc.date.available2019-10-24T00:05:53Z-
dc.date.issued2019en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30320-
dc.description.abstractFinancial data science and econometrics are highly complementary. They share an equivalent research process with the former’s intellectual point of departure being statistical inference and the latter’s being the data sets themselves. Two challenges arise, however, from digitalisation. First, the ever-increasing computational power allows researchers to experiment with an extremely large number of generated test subjects (i.e. p-hacking). We argue that p-hacking can be mitigated through adjustments for multiple hypothesis testing where appropriate. However, it can only truly be addressed via a strong focus on integrity (e.g. pre-registration, actual out-of-sample periods). Second, the extremely large number of observations available in big data set provides magnitudes of statistical power at which common statistical significance levels are barely relevant. This challenge can be addressed twofold. First, researchers can use more stringent statistical significance levels such as 0.1% and 0.5% instead of 1% and 5%, respectively. Second, and more importantly, researchers can use criteria such as economic significance, economic relevance and statistical relevance to assess the robustness of statistically significant coefficients. Especially statistical relevance seems crucial, as it appears far from impossible for an individual coefficient to be considered statistically significant when its actual statistical relevance (i.e. incremental explanatory power) is extremely small.en_UK
dc.language.isoenen_UK
dc.publisherInforma UK Limiteden_UK
dc.relationBrooks C, Hoepner AGF, McMillan D, Vivian A & Wese Simen C (2019) Financial data science: the birth of a new financial research paradigm complementing econometrics?. European Journal of Finance, 25 (17), pp. 1627-1636. https://doi.org/10.1080/1351847x.2019.1662822en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is an Accepted Manuscript of an article published by Taylor & Francis Group in European Journal of Finance on 17 Sep 2019, available online: http://www.tandfonline.com/10.1080/1351847X.2019.1662822.en_UK
dc.subjectFinancial data scienceen_UK
dc.subjecteconometricsen_UK
dc.subjectbig dataen_UK
dc.subjectnovel datasetsen_UK
dc.subjectrisk measurementen_UK
dc.titleFinancial data science: the birth of a new financial research paradigm complementing econometrics?en_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2021-03-18en_UK
dc.rights.embargoreason[BHMVW FDS complementing Econometrics 20190802 final.pdf] Publisher requires embargo of 18 months after formal publication.en_UK
dc.identifier.doi10.1080/1351847x.2019.1662822en_UK
dc.citation.jtitleEuropean Journal of Financeen_UK
dc.citation.issn1466-4364en_UK
dc.citation.issn1351-847Xen_UK
dc.citation.volume25en_UK
dc.citation.issue17en_UK
dc.citation.spage1627en_UK
dc.citation.epage1636en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildavid.mcmillan@stir.ac.uken_UK
dc.citation.date17/09/2019en_UK
dc.contributor.affiliationUniversity of Readingen_UK
dc.contributor.affiliationUniversity College Dublin (UCD)en_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationLoughborough Universityen_UK
dc.contributor.affiliationUniversity of Readingen_UK
dc.identifier.isiWOS:000489682000001en_UK
dc.identifier.scopusid2-s2.0-85073071387en_UK
dc.identifier.wtid1468591en_UK
dc.contributor.orcid0000-0002-5891-4193en_UK
dc.contributor.orcid0000-0003-4119-3024en_UK
dc.date.accepted2019-08-12en_UK
dcterms.dateAccepted2019-08-12en_UK
dc.date.filedepositdate2019-10-23en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBrooks, Chris|en_UK
local.rioxx.authorHoepner, Andreas G F|en_UK
local.rioxx.authorMcMillan, David|0000-0002-5891-4193en_UK
local.rioxx.authorVivian, Andrew|en_UK
local.rioxx.authorWese Simen, Chardin|0000-0003-4119-3024en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-03-18en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-03-17en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-03-18|en_UK
local.rioxx.filenameBHMVW FDS complementing Econometrics 20190802 final.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1466-4364en_UK
Appears in Collections:Accounting and Finance Journal Articles

Files in This Item:
File Description SizeFormat 
BHMVW FDS complementing Econometrics 20190802 final.pdfFulltext - Accepted Version445.94 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.