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Abstract: 

In this paper, we compare and contrast financial data science with econometrics and conclude that the 
former is inevitably interdisciplinary due to the numerous skillsets needed within a competitive research 
team. The latter, in contrast, is firmly rooted in economics. Both areas are highly complementary, as they 
share an equivalent process with the former’s intellectual point of departure being statistical inference and 
the latter’s being the data sets themselves. Two challenges arise, however, from the age of big data. First, 
the ever increasing computational power allows researchers to experiment with an extremely large 
number of generated test subjects and leads to the challenge of p-hacking. Second, the extremely large 
number of observations available in big data sets provide levels of statistical power at which common 
statistical significance levels are barely a challenge. We argue that the former challenge can be mitigated 
through adjustments for multiple hypothesis testing where appropriate. However, it can only truly be 
addressed via a strong focus on the integrity of the research process and the researchers themselves, with 
pre-registration and actual out-of-sample periods being the best technical though in themselves potentially 
insufficient tools. The latter challenge can be addressed in two ways. First, researchers can simply use 
more stringent statistical significance levels such as 0.1%, 0.5% and 1% instead of 1%, 5% and 10%, 
respectively. Second, and more importantly, researchers can use additional criteria such as economic 
significance, economic relevance and statistical relevance to assess the robustness of statistically 
significant coefficients. Especially statistical relevance seems crucial in the age of big data, as it appears not 
impossible for an individual coefficient to be considered statistically significant when its actual statistical 
relevance (i.e. incremental explanatory power) is extremely small. 
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Introduction 
 

“Good with numbers? Fascinated by data? The sound you hear is opportunity knocking.“ These 

were the words of the New York Times when it announced “the Age of Big Data” on February 11th  

2012.1  According to Version 6.0 of the Data Never Sleeps report, nowadays it takes less than three 

minutes for a million tweets to be published, less than 20 seconds for a million Google searches to 

be conducted and less than four seconds for The Weather Channel to receive 1 million forecast 

requests.2 

 

How do econometricians react to this newly found abundance in data?  Some celebrate “the 

triumph of the empiricists” and announce “the birth of financial data science” (Simonian and 

Fabozzi, 2019, p. 10), while others warn of p-hacking – the process of arriving at superficially 

attractive and selective p-values through multiple hypothesis testing, whereby multiple may well 

mean millions or more (Chordia, Goyal and Saretto, 2017). While such data mining has probably 

always occurred in academic and professional finance research and similarly always found its critics, 

it has become much more attractive, more rewarding, and likewise much more dangerous in the 

age of big data. Even Harry Markowitz himself recently commented on the issue of data mining in 

the age of big data, stating with his co-authors Arnott and Harvey (AHM in the following):  

 

“We are all data miners, even if only by living through a particular history that shapes our beliefs” 

(Arnott, Harvey and Markowitz, 2019, p. 64)  

Viewing data mining as an inevitable aspect of being an empirical financial researcher in line with 

AHM appears pragmatic and sensible. Yet, it implicitly cries out for much more academic research 

into the analytical measurement opportunities, statistical methods, and new financial products 

 
1 https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html 
2 https://web-assets.domo.com/blog/wp-content/uploads/2018/06/18_domo_data-never-sleeps-6verticals.pdf 

https://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html
https://web-assets.domo.com/blog/wp-content/uploads/2018/06/18_domo_data-never-sleeps-6verticals.pdf
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arising in and from the age of big data as well as the research process and researcher integrity 

needed to achieve robust conclusions. Furthermore, research on big data in finance needs to be 

connected with all the knowledge already in place, most notably in the area of financial 

econometrics. Consequently, in this paper we explore the degree to which the newly emerging 

financial version of the scientific enquiry into big data is complementary to econometrics and we 

discuss the opportunities and challenges that arise from the birth of this new research paradigm, 

which we call ‘Financial Data Science’.3    

  

Defining Financial Data Science 
 

“[E]conometrics is measurement in economics …  [and] financial econometrics will 

[consequently] be defined as the application of statistical techniques to problems in finance” 

(Brooks, 2002, p. 1). While the definition of econometrics is well established, embodying the 

process of measurement and “model-based statistical inference” (Campbell, Lo and MacKinlay, 

1997, p. 3), formal definitions of financial data science are yet to emerge. To provide such a 

formal definition of financial data science, we contrast it with econometrics before 

subsequently discussing the complementary nature of the two fields. 

 

Financial data science differs from econometrics in its intellectual point of departure, its 

process and its ambitions.  While econometrics’ intellectual point of departure is statistical 

 
3 We would like to note that we used the term ‘Financial Data Science’ as part of the ‘Econometrics and Financial Data Science’ 
workshop at the ICMA Centre of Henley Business School on November 2nd 2017, before the equivalently titled paper by Giudici 
(2018) or Simonian and Fabbozzi (2019: 10) announcement of “the birth of financial data science” in their first issue of The 
Journal of Financial Data Science published by IPR journals. Our use of the term ‘Financial Data Science’ indeed dates back to 
November 13th 2014, when one of our co-authors used it in a Henley Business School faculty viewpoint (Hoepner, 2014). He had 
been inspired by discussions he had earlier in the year with Damian Borth, who was a postdoc at the International Computer 
Science Institute (ICSI) of UC Berkeley at the time.   https://www.henley.ac.uk/news/2014/financial-data-science-vs-financial-
economics.      

https://www.henley.ac.uk/news/2014/financial-data-science-vs-financial-economics
https://www.henley.ac.uk/news/2014/financial-data-science-vs-financial-economics
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inference (i.e., the process), financial data scientists share a common interest in the data sets 

whose exploration and explanation can advance financial decision making (i.e., the ingredients). 

Despite the unstoppable move to big data, the availability of high quality (i.e., trustworthy) data 

sets remains the key practical constraint for the empirical researcher. Consequently, the desire 

to explain human behaviour through the exploration and critical assessment of new data sets is 

the common intellectual desire which unites financial data scientists whose statistical 

techniques can vary from the probabilistic regression models of financial economists to the 

neural network-based classification models of computer scientists. 

 

To provide researchers with the best odds of explaining human behaviour with ever increasing 

data sets, financial data science is inevitably inter-disciplinary. In other words, the expertise and 

skills needed to insightfully extract information from unstructured data, to efficiently process 

several big datasets, and to design and execute effective statistical analysis, are so plentiful that 

it normally requires a financial econometrician, a computer scientist and an individual with 

deep knowledge about financial markets to design a competitive financial data science process. 

While two researchers maybe able to cover these three required skillsets, it is extremely rare 

that a given individual truly possesses all three. Consequently, financial data science is 

inevitably teamwork. To maintain a good interdisciplinary team spirit, it is paramount that no 

member of single discipline insists on the idiosyncratic attributes of their discipline (i.e., 

theoretical assumptions) being more worthy or truthful than another discipline’s idiosyncratic 

attributes. Therefore, financial data scientists “minimize … [their] use of assumptions … [and] 

make every effort to empirically test these. In other words, while .. [others] tend to look at the 

world from their theoretical angle, financial data scientists .. undertake a deep investigation of 
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all available data to then arrive at conceptual explanations of what happens in the real world” 

(Hoepner, 2016, p. 2). 

 

Similarly originating from the inevitably interdisciplinary process, the ambitions of financial data 

scientists stretch beyond the realms of economics to keep all members of the team highly 

integrated and motivated. The ReFine Principles of Financial Data Science launched in 2016, 4 

for instance, include a clear opposition to any form of discrimination and endorsements of the 

sharing economy and an open source culture. Financial data scientists adhering to these 

principles also display a general support for science and aim to enlighten society by “leveraging 

financial and computer science for the broader good” (Financial Data Science Association, 2016, 

p. 1). In other words, while financial data scientists focus their work on data-driven research 

whose conclusions may have the possibility to advance financial decision making, their 

ambitions as a team are less focused on individual rent seeking and more on societal impact to 

sustain a strong team spirit.5  

 

Consequently, we define financial data science as an interdisciplinary process of scientific 

enquiry, which is rigorously and repeatedly exploring and explaining the variance in all relevant 

data sets to advance financial decision making and thereby enlightening not only the 

interdisciplinary team of researchers but also society as a whole. In line with (Simonian and 

Fabozzi, 2019, p. 12), we argue “that financial data science is a discipline in its own right, and 

not merely the application of data science methods to finance”, since the self-reinforcing yet 

mean-reverting nature of many financial markets produces distributions alien to classic data 

 
4 https://fdsaglobal.org/initiatives/refine-principles-of-financial-data-science/ 
5 See also the Asilomar AI Principles which contain a similar team spirit focused ethos https://futureoflife.org/ai-principles/?cn-
reloaded=1  

https://fdsaglobal.org/initiatives/refine-principles-of-financial-data-science/
https://futureoflife.org/ai-principles/?cn-reloaded=1
https://futureoflife.org/ai-principles/?cn-reloaded=1
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scientists and hence require a distinct, interdisciplinary field of enquiry. Nevertheless, the 

emerging field of financial data science is inevitably complimentary to the intersection of data 

science and other disciplines (e.g., evidence-based medicine). We argue in the following section 

that it experiences a similar yin yang style complementary relationship with econometrics.  

  

Yin Yang of Econometrics and Financial Data Science 
 

While econometrics and financial data science differ in their intellectual point of departure (i.e. 

statistical techniques and data sets, respectively) and exhibit some further divergences largely due 

to the inevitably interdisciplinary nature of financial data science, the two fields have many more 

aspects in common than divide them. Both use econometric concepts and techniques, both fields 

develop their hypotheses informed by some form of economic theorising. Similarly, both are likely 

to make use of the wealth of newer and bigger data sets resulting from digitalisation and an 

increased willingness of commercial organisations to share their growing number of proprietary 

datasets with academics. And finally, both fields are likely to experience an increased practical 

relevance due to their analysis of bigger and more often proprietary datasets. 

 

Hence, whereas econometrics has more emphasis on statistical inference and financial data science 

has more emphasis on big data processing, both fields share both concepts. Similarly, neural 

networks have been described for decades in advanced econometrics textbooks and the concept of 

explanatory power simultaneously represents the fit of the econometricians’ model as well as the 

degree to which a financial data scientist understands the variation in the respective dependent 

variable. In other words, econometrics and financial data science represent two complementary 

perspectives on the same process. Hence, we argue that they enjoy a yin yang type relationship as 

displayed in Figure 1. 
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Figure 1: The Yin Yang (i.e. complementary relationship) of Econometrics and Financial Data Science 

Notes: The Yin Yang symbol in the middle captures the most crucial aspects of econometrics and 
financial data science. The text in the boxes provides a formal description of the processes 
contributing to the complementary relationship between econometrics and financial data science. 
The text in quotation marks and italics provides practical commentary. 

 

We continue by jointly exploring the implications of the ever increasing amount of human data for 

the fields of econometrics and financial data science while simultaneously introducing the 

contributions of this special issue.  We commence by discussing new analytical measurement 

opportunities and new financial products arising from the age of big data. Subsequently, we discuss 

the challenges that big data impose on the financial economics research process and the resulting 

need for new research methods and processes to address these. We propose to extend the 

researchers’ focus on statistical significance and economic relevance to also include statistical 

relevance and economic significance. We conclude with a discussion of the urgent avenues for 

future research in the fields of econometrics and financial data science at the advent of the age of 

big data.  
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Research Opportunities in the Age of Big Data  
 

The most obvious implication of the age of big data is new datasets. A stunning example of such 

work in progress is (Fedyk and Hodson, 2018), who extract monthly information on career progress 

from over thirty million curricula vitaes of employees of US firms to investigate the impact of 

turnover and the skill level of human capital on firm performance. They observe that higher 

turnover hurts returns, which is intuitive but would previously have been studied only on much 

smaller and hence less generalisable datasets.  Based on a similar text-extraction approach, 

(Goloshchapova et al., 2019, p. 2) used “a battery of Python code … and … the latest R algorithm”  

to extract the topics discussed in over 5,000 corporate social responsibility (CSR) reports of more 

than thousand firms from 15 European countries between 1999 and 2016. They observe topic 

clustering at the sectoral level with, for instance, industrial firms displaying a bigger concern for 

employee safety and consumer firms being more engaged in topics such as ‘food packaging’. While 

such results may seem intuitive to the reader, it is the relation of these ‘big data statistics’ to 

economic outcomes that presents the deeper appeal of financial data science. 

 

Thng (2019) represents such a paper, which relates text-extracted information to abnormal returns. 

She first extracts the tone of 647 Initial Public Offerings (IPO) of US firms employing four separate 

sentiment measurement approaches.6 She finds that VC-backed IPO have a less optimistic tone and 

explains this with concerns around litigation risk. Nevertheless, this defensive language does not 

appear to hamper performance. Much the opposite, Thng (2019) observes VC-backed IPOs to 

significantly outperform non VC-backed IPOs over longer horizons. A less expected but by no means 

less interesting application of novel datasets in financial data science is offered by Kumar et al. 

 
6 See Table 1 in her paper for a comparison of these techniques. 
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(2018). The authors obtained access to a rather unique proprietary dataset: over five million bank 

accounts with 250 million transactions belonging to clients over the age of 70. Such elderly clients 

may be the victims of fraud and hence protecting them reduces the operational risk of the major 

financial institution that provided the data on the condition of anonymity. Employing both logistic 

regression and classification techniques (support vector machines), the authors develop a new alert 

model that significantly advances beyond the practical status quo in terms of accuracy. Apart from 

being a relevant academic contribution and in practical terms representing a significant reduction in 

operational risk, this paper also received a very positive review from the Wall Street Journal.7 In 

short, a truly innovative and successful financial data science research project that also displayed a 

positive impact on society.  

 

Besides the exploration of new datasets, the ever increasing amounts of information in the age of 

big data also allow for a deeper exploration of previous overlooked research questions, either 

through a very large collection of various individual data sets or through a much deeper dive into 

previously less transparent subjects of analysis. A famous example of a very large collection of data 

sets is Moskowitz, Hua and Heje's (2012) study of time series momentum in 58 liquid security types.  

Similarly, Cotter and Suurlaht's (2019) study risk across various asset classes. They include credit 

risk, equity market risk, interest rate risk, interbank liquidity risk, and real estate market risk, and 

they find that spillovers between these are led by the equity and real estate markets, which 

supports the view that these have a special role in terms of financial stability.  

 

Asimakopoulos, Asimakopoulos and Fernandes (2018) focus on a previously less transparent 

subject of analysis: unlisted firms. More specifically, they compare unlisted firms’ cash holdings 

with those of listed firms and expect that unlisted firms will be more inspired by the precautionary 

 
7 https://www.wsj.com/articles/banks-monitor-older-customers-for-cognitive-decline-1542730606 

https://www.wsj.com/articles/banks-monitor-older-customers-for-cognitive-decline-1542730606
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principle, therefore holding more cash. The authors confirm their expectation based on a sample of 

more than hundred thousand Euro-area manufacturing firms. Another category of previously less 

studied subjects of analysis are those products that only exist as a consequence of bigger data sets 

and much faster computational processing capabilities. One class of these products is Exchange 

Traded Funds (ETFs). Studying a specific version of these ETFs – leveraged ETFs based on 

commodities – Del Brio, Mora-Valencia and Perote (2018) show that semi-nonparametric 

approaches to risk assessment can perform better than Gaussian approaches in backtests of 

expected shortfall. In fact, nonparametric approaches are themselves likely to experience a 

resurgence in popularity due to the classification focused nature of many machine learning 

approaches. Consequently, Jackson’s (2019) theoretical contribution to this special issue is rather 

timely since the development of new tests and techniques further extends the toolbox available for 

data scientists to conduct analysis. In particular, non-parametric tests (such as Jackson, 2019) do 

not require distributional assumptions about the underlying data, a major advantage when there is 

still much debate over the generating process. 

 

Research Challenges originating from the Age of Big Data  
 

Based on increasing computational power, researchers such as Mclean and Pontiff (2016) or Jacobs 

and Müller (2019) conduct ‘all-in’ studies of any relevant cross-sectional predictor of stock returns 

and the effect of academic publication on the very predictability of these factors. While McLean 

and Pontiff (2016) study “only” 97 predictors, Jacobs and Müller (2019) increase this number to 

241. Conceptually, there is no theoretical limit to the number of cross-sectional predictors and or 

time series trading strategies than can be studied, and investment practice is a very willing 

audience for such kind of academic research.  In fact, the increasing literacy of academic scholars 
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from various disciplines in programming languages such as Python and R is likely to make the 

occurrence of such ‘all-in’ studies a regular sight in both academic and professional seminar series.  

 

Increasing in the numbers game, Psaradellis et al. (2018) apply 7,846 technical trading rules to daily 

data of crude oil futures and the US Oil fund to a sample period of almost 10 years that provides 

them with significant statistical power. Employing controls for multiple hypothesis testing proposed 

by Romano and Wolf (2007) and Bajgrowicz and Scaillet (2012), they cannot find systematic, 

persistent abnormal returns to any of the technical trading rules. Taking the numbers game to the 

extreme, work in progress by Chordia, Goyal and Saretto (2017) generates 2.1 million trading 

strategies to evaluate the severity of p-hacking in finance research. They find that most rejections 

of the null hypothesis under single hypothesis testing disappear using a multiple hypothesis testing 

framework that accounts for cross-correlations within signals. They conclude that p-hacking is a 

serious concern for finance research, whose severity is substantially increased by the advent of the 

age of big data. 

 

Consequently, researchers face the challenge that, due to increasingly large numbers of 

observations available, the conventional protocols for hypothesis testing are disrupted by shocks to 

the statistical power of the test datasets (i.e. extremely large number of observations) and shocks 

to the computing power of the researchers themselves (i.e., extremely large numbers of generated 

test subjects). While the computing power challenges are theoretically infinite following Moore’s 

law, the statistical power challenge can be precisely illustrated based on the t-statistics that a 

correlation coefficient would have in a controlled laboratory setting depending on the number of 

observations. As shown in Table 1, theoretically true correlation coefficients of up to 2% would 

have t-statistics far below the critical values for conventional significance levels  in case of sample 

sizes of 100 or even 1,000 observations. However, the same theoretically true correlation 
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coefficients would be declared statistically significant from 0.1% upwards for 10 million 

observations. This striking difference is neither caused nor helped by the fact that the critical values 

themselves decrease incrementally with the number of observations. In any case, it highlights how 

severe the statistical power challenge is in the age of big data. More worryingly, from 10 million 

observations onwards, regression coefficients are in many cases more likely to be declared highly 

significant at conventional significance levels than to be considered insignificant or mildly 

significant, even if they are in fact entirely inconsequential. 

 

True 
correlation 
coefficient 

t-statistics of correlation coefficients depending on number of observations 

10 million 1 million 100,000 10,000 1,000 100 
0.1% 3.1623 1.0000 0.3162 0.1000 0.0316 0.0099 
0.2% 6.3246 2.0000 0.6325 0.2000 0.0632 0.0198 
0.3% 9.4869 3.0000 0.9487 0.3000 0.0948 0.0297 
0.4% 12.6492 4.0000 1.2649 0.4000 0.1264 0.0396 
0.5% 15.8116 5.0001 1.5811 0.5000 0.1580 0.0495 
0.6% 18.9740 6.0001 1.8974 0.6000 0.1896 0.0594 
0.7% 22.1365 7.0002 2.2136 0.6999 0.2211 0.0693 
0.8% 25.2990 8.0002 2.5299 0.7999 0.2527 0.0792 
0.9% 28.4616 9.0004 2.8461 0.8999 0.2843 0.0891 
1.0% 31.6244 10.0005 3.1624 0.9999 0.3159 0.0990 
1.1% 34.7872 11.0007 3.4787 1.1000 0.3475 0.1089 
1.2% 37.9501 12.0009 3.7950 1.2000 0.3791 0.1188 
1.3% 41.1131 13.0011 4.1113 1.3000 0.4107 0.1287 
1.4% 44.2762 14.0014 4.4276 1.4000 0.4423 0.1386 
1.5% 47.4395 15.0017 4.7439 1.5000 0.4739 0.1485 
1.6% 50.6029 16.0020 5.0602 1.6000 0.5055 0.1584 
1.7% 53.7665 17.0024 5.3766 1.7001 0.5371 0.1683 
1.8% 56.9302 18.0029 5.6930 1.8001 0.5687 0.1782 
1.9% 60.0941 19.0034 6.0094 1.9002 0.6003 0.1881 
2.0% 63.2582 20.0040 6.3258 2.0002 0.6319 0.1980 

Table 1:  Statistical power challenge as illustrated for the simple example of t-statistics of a Pearson 
correlation coefficient.  
Notes: The t-stats have been computed as the true correlation coefficient multiplied by the 
square root of the degrees of freedom (i.e. observations minus two) scaled by the square 
root of the difference between one and the squared true correlation coefficient (see Weiss, 
2012, pp. 696–697). 
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These statistical and computing power challenges require new thinking about research protocols 

and practices to allow researchers to explore the opportunities offered by ever faster computing 

and exponentially increasing amounts of data being produced, while simultaneously ensuring that 

the profession maintains its integrity. 

 

New Research Practices to address Research Challenges in the Age of Big Data?  
 

To address the issue of p-hacking resulting from the increasing ability of researchers to generate an 

extremely large number of usually interrelated test portfolios, Arnott, Harvey and Markowitz (2019)  

develop a “research protocol for investment strategy backtesting” including 22 questions in 7 

sections. While some questions are - as one would expect from AHM – technical such as “[i]s the 

model resilient to structural change” or “[h]ave the researchers taken steps to produce the simplest 

practical model specification” (p.73), the vast majority of their questions are procedural if not 

philosophical and focus on the integrity of the research process. 

 

For instance, AHM ask “[d]id the researchers take steps to ensure the integrity of the data?” 

Similarly, they question whether “the research culture reward[s] the quality of the science rather 

than the finding of a winning strategy”. These questions about the integrity of the research process 

are crucial as adjustments for multiple hypotheses testing only work if researchers are transparent 

about each and every test they conducted.  AHM even go beyond the integrity questions and 

suggest assessing the level of education of the researchers and their managers by asking if “the 
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researchers [are] aware that true out-of-sample tests are only possible in live trading” and if 

“researchers and management understand that most tests will fail” (p.73).  

 

While there is clearly a very strong need to assess the integrity of researchers and their research 

processes in the age of big data, we do not fully understand how AHM aim to practically assess 

these integrity questions without relying on a researcher self-assessment format that may itself 

suffer from financial conflicts of interest. AHM recommend determining any relevant research 

design decision ex-ante before the formal research process has started but this sadly does not 

prevent researchers from conducting informal explorations to determine ex-ante research design 

set ups which are supportive of their subsequent formal research process. Further conceptual 

development and perhaps inspiration from other scientific disciplines such as medicine seem 

needed to address these significant challenges resulting from researchers’ newfound abilities to 

create extremely large numbers of test portfolios.  

 

Furthermore, the challenge of millions of test portfolios is reasonably specific to a selection of 

research questions such as the performance of investment strategies, while the challenge of an 

extremely large number of observations is likely to impact virtually any research question. In our 

view, an obvious response to this – apart from multiple hypothesis testing where applicable – is to 

sharpen the conventional significance levels required from 10%, 5% and 1% to 1%, 0.5% and 0.1%, 

respectively. Such a simple adjustment of expectations regarding statistical significance could be 

applied across research questions and would simply recognise that one can expect more robustness 

in conclusions from modern researchers who can see much further and/or in much more detail 

than previous generations.  
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However, we argue that an increased focus on concepts beyond statistical significance allows 

researchers to utilise the benefits of the age of big data while protecting themselves from the 

pitfalls. These concepts are economic significance, economic relevance and especially statistical 

relevance as outlined in Table 2. Crucially, while statistical power is vastly increased by the use of 

big data and hence the difficulty of achieving conventional significance levels (i.e. 5%) has dropped 

substantially, the remaining three concepts are not negatively affected by the advent of the age of 

big data. 

 

Economic significance (i.e., the effect size itself) remains unaffected, while more data sets allow for 

a more seamless comparison of an effect size with other economic indicators. Similarly, economic 

relevance remains to be assessed by the relationship between the effect size and distributional 

properties such as the mean and standard deviation of the dependent variable. It probably also 

slightly benefits from bigger datasets, as these imply that the distributions of the dependent 

variable are estimated with incrementally increasing accuracy. 

 

Since each individual coefficient’s probability of being statistically significant increases with the 

substantially larger statistical power resulting from the use of big data, the statistical relevance of 

each coefficient is likely to become a more important assessment criterion for research quality. 

Statistical relevance can be measured as an incremental explanatory power (e.g. Adjusted R-

squared, Shapley R squared) of adding the respective variable to the otherwise identical model. In 

the age of big data it appears not impossible for an individual coefficient to be considered 

statistically significant when its actual statistical relevance is negligible or even slightly negative. 

Consequently, we propose that researchers should discuss not only the statistical significance of 

the coefficients to key independent variables on which they build their narratives but also measure 
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and discuss statistical relevance as well as commenting on the economic significance and relevance 

of key coefficients. 

 

Discipline (horizontal)  
| Concept (vertical) 

Statistical Economic 

Significance 

 
Conventional statistical 

significance levels of 1, 5% and 
10% may need to strengthen to 

0.1%, 0.5% and 1% given the 
vastly increasing statistical power 

of big data. A multiple 
hypotheses testing framework 
may need to be applied where 

relevant. 
 

 
The effect size of estimated 

coefficients can be compared to 
a wider array of economic 

alternatives to determine their 
substance given increasing data 

availability 
 

Relevance 

 
Since individual coefficients’ 

probabilities of being statistically 
significant increases with 

statistical power, their statistical 
relevance becomes crucial, 

which can be measured as the 
incremental explanatory power 

(e.g. Adjusted R squared) of 
adding the respective variable to 

an otherwise identical model 
 

 
The effect size of the estimated 

coefficient can be seamlessly 
compared to the mean, standard 

deviation and skewness of the 
dependent variable distribution 

in the context of bigger data 
 

Table 2:  Implication of big data for the significance and relevance of empirical research results in 
statistical and economic terms 

 
 
 

Concluding Thoughts  
 

With millions of tweets being published in less than 10 minutes and millions of google searches 

being requested in less than one minute, we are living through the advent of the age of big data. 

Such a shock to the amount of available information appears to result in the emergence of a new 

research paradigm: financial data science. Acknowledging that we are currently experiencing the 

advent of the age of big data with ever increasing amounts of data produced on a daily basis, this 

brings into being exciting new opportunities for academic research which itself will evolve, if not 
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suddenly then at least gradually, in response to this new environment.  We conclude on four 

aspects. 

 

First and maybe most obviously, the strongly increasing computational power and the 

seamlessness of open source programming languages such as Python and R are likely leading to 

significant challenges for their commercial competitors. This process democratises access to 

statistical packages and economises on limited scholarly research funding, and is therefore 

beneficial even if it implies that many of us will gradually have to adapt our textbooks and taught 

courses.  

 

Second, econometrics and financial data science are clearly complimentary fields and we are likely 

to see an increasing number of studies using innovative fact extraction-based datasets such as 

Fedyk and Hodson (2018) or Thng (2019) as well as many more ‘all in’ studies of any relevant effect 

such as Mclean and Pontiff (2016) or Jacobs and Müller (2019). Studies such as Kumar et al.(2018), 

who use financial data science techniques to directly advance societal goals such as the protection 

of the elderly from fraud, are very welcome and hopefully also a more common sight at seminars 

going forward.  

 

Third, the econometrics and financial data science research community may receive 

inspiration from medical research and collaborate to establish an institution such as the 

Cochrane Reviews for jointly synthesizing research results.8 While the integrity of each  

individual researcher is hard to ensure, a community of researchers acting jointly should be  

able to keep itself accountable and thereby maintain its integrity. Pre-registration of research 

 
8 To the best of our knowledge, such an institution like the Cochrane Library (https://www.cochranelibrary.com/about/about-
cochrane-reviews) solely dedicated to synthesizing research only exists in the medical discipline, where communicating the most 
likely best treatment of a given sympton to general practitioners in the light of conflicting results from empirical studies can 
potentially be a matter of life or death.   

https://www.cochranelibrary.com/about/about-cochrane-reviews
https://www.cochranelibrary.com/about/about-cochrane-reviews
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as practiced in much of medicine and psychology,9 and as suggested by López de Prado (2019),  

for financial data science research, may also support integrity. Furthermore, we support the 

idea of actual out-of-sample periods of at least one year occurring past the pre-registration in  

addition to our proposal of an assessment of the statistical and economic significance and  

relevance of each key coefficient.  

 
Finally, we clearly need much more engagement with performance management standards. AHM’s 

(2019) protocol for backtesting hypothetical investment strategies is clearly a step in the right 

direction, but we need further thinking on how to address a new version of the old joint hypothesis 

problem. While pre-registering the research design and actual out-of-sample periods would 

certainly help, we might need to develop a research stream on the performance models themselves 

to avoid researchers registering weak performance models as often as some investment managers 

cherry pick custom benchmarks. But it is not only financial return models that we are concerned 

about. We are maybe even more concerned about our models of risk which often are actual models 

of deviation to both sides (e.g., variance and tracking error are used more often than semi-variance 

and trailing error, respectively). If risk is measured including upside and downside deviations from 

the mean (i.e. variance) or an index return (i.e. tracking error), then the researcher assumes that 

each investor “considers extremely high and extremely low returns equally undesirable” 

(Markowitz, 1959, p. 194). Since this assumption is incorrect for any profit maximizing investor and 

(Markowitz, 1959, p. 193) practical caveat that computing based on co-variance instead of variance 

requires “roughly two to four times as much computing time” does not apply anymore given 2019 

computational power, the accurate measurement of risk or the implications of inaccurate 

measurement of risk appear fruitful avenues for further research in econometrics and financial data 

science.  

  

 
9 https://www.sciencemag.org/news/2018/09/more-and-more-scientists-are-preregistering-their-studies-should-you 

https://www.sciencemag.org/news/2018/09/more-and-more-scientists-are-preregistering-their-studies-should-you
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