Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30193
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification
Author(s): Fitzer, Susan C
McGill, Rona A R
Torres Gabarda, Sergio
Hughes, Brian
Dove, Michael
O'Connor, Wayne
Byrne, Maria
Contact Email: susan.fitzer@stir.ac.uk
Keywords: aquaculture
calcification
carbon pathway
climate change
estuary
low pH
Saccostrea glomerata
selectively bred families
Sydney rock oyster
Issue Date: Dec-2019
Citation: Fitzer SC, McGill RAR, Torres Gabarda S, Hughes B, Dove M, O'Connor W & Byrne M (2019) Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Global Change Biology, 25 (12), pp. 4105-4115. https://doi.org/10.1111/gcb.14818
Abstract: Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild‐type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high‐resolution electron backscatter diffraction and carbon isotope analyses (as δ13C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate‐driven change to habitat acidification.
DOI Link: 10.1111/gcb.14818
Rights: © 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
gcb.14818.pdfFulltext - Published Version1.38 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.