Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/30193
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fitzer, Susan C | en_UK |
dc.contributor.author | McGill, Rona A R | en_UK |
dc.contributor.author | Torres Gabarda, Sergio | en_UK |
dc.contributor.author | Hughes, Brian | en_UK |
dc.contributor.author | Dove, Michael | en_UK |
dc.contributor.author | O'Connor, Wayne | en_UK |
dc.contributor.author | Byrne, Maria | en_UK |
dc.date.accessioned | 2019-09-28T00:00:59Z | - |
dc.date.available | 2019-09-28T00:00:59Z | - |
dc.date.issued | 2019-12 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/30193 | - |
dc.description.abstract | Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild‐type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high‐resolution electron backscatter diffraction and carbon isotope analyses (as δ13C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate‐driven change to habitat acidification. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Wiley | en_UK |
dc.relation | Fitzer SC, McGill RAR, Torres Gabarda S, Hughes B, Dove M, O'Connor W & Byrne M (2019) Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification. Global Change Biology, 25 (12), pp. 4105-4115. https://doi.org/10.1111/gcb.14818 | en_UK |
dc.rights | © 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | aquaculture | en_UK |
dc.subject | calcification | en_UK |
dc.subject | carbon pathway | en_UK |
dc.subject | climate change | en_UK |
dc.subject | estuary | en_UK |
dc.subject | low pH | en_UK |
dc.subject | Saccostrea glomerata | en_UK |
dc.subject | selectively bred families | en_UK |
dc.subject | Sydney rock oyster | en_UK |
dc.title | Selectively bred oysters can alter their biomineralization pathways, promoting resilience to environmental acidification | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1111/gcb.14818 | en_UK |
dc.identifier.pmid | 31554025 | en_UK |
dc.citation.jtitle | Global Change Biology | en_UK |
dc.citation.issn | 1365-2486 | en_UK |
dc.citation.issn | 1354-1013 | en_UK |
dc.citation.volume | 25 | en_UK |
dc.citation.issue | 12 | en_UK |
dc.citation.spage | 4105 | en_UK |
dc.citation.epage | 4115 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | NERC Natural Environment Research Council | en_UK |
dc.contributor.funder | Australian Research Council | en_UK |
dc.contributor.funder | Natural Environment Research Council | en_UK |
dc.author.email | susan.fitzer@stir.ac.uk | en_UK |
dc.citation.date | 25/09/2019 | en_UK |
dc.contributor.affiliation | Institute of Aquaculture | en_UK |
dc.contributor.affiliation | NERC Radiocarbon Facility (SUERC) | en_UK |
dc.contributor.affiliation | University of Sydney | en_UK |
dc.contributor.affiliation | Hunter Local Land Services | en_UK |
dc.contributor.affiliation | New South Wales Department of Primary Industries | en_UK |
dc.contributor.affiliation | New South Wales Department of Primary Industries | en_UK |
dc.contributor.affiliation | University of Sydney | en_UK |
dc.identifier.scopusid | 2-s2.0-85073997033 | en_UK |
dc.identifier.wtid | 1453788 | en_UK |
dc.contributor.orcid | 0000-0003-3556-7624 | en_UK |
dc.contributor.orcid | 0000-0003-0400-7288 | en_UK |
dc.contributor.orcid | 0000-0002-0972-4668 | en_UK |
dc.contributor.orcid | 0000-0002-8902-9808 | en_UK |
dc.date.accepted | 2019-08-20 | en_UK |
dcterms.dateAccepted | 2019-08-20 | en_UK |
dc.date.filedepositdate | 2019-09-26 | en_UK |
dc.relation.funderproject | An understanding of biomineralisation pathways is key to predict climate change impact on aquaculture | en_UK |
dc.relation.funderref | NE/N01409X/2 | en_UK |
dc.subject.tag | Aquaculture and Climate Change | en_UK |
dc.subject.tag | Environmental Change | en_UK |
dc.subject.tag | Marine Biology | en_UK |
rioxxterms.apc | paid | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Fitzer, Susan C|0000-0003-3556-7624 | en_UK |
local.rioxx.author | McGill, Rona A R|0000-0003-0400-7288 | en_UK |
local.rioxx.author | Torres Gabarda, Sergio| | en_UK |
local.rioxx.author | Hughes, Brian| | en_UK |
local.rioxx.author | Dove, Michael| | en_UK |
local.rioxx.author | O'Connor, Wayne|0000-0002-0972-4668 | en_UK |
local.rioxx.author | Byrne, Maria|0000-0002-8902-9808 | en_UK |
local.rioxx.project | NE/N01409X/2|Natural Environment Research Council|http://dx.doi.org/10.13039/501100000270 | en_UK |
local.rioxx.freetoreaddate | 2019-09-27 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2019-09-27| | en_UK |
local.rioxx.filename | gcb.14818.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1365-2486 | en_UK |
Appears in Collections: | Aquaculture Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
gcb.14818.pdf | Fulltext - Published Version | 1.38 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.