Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHelfter, Caroleen_UK
dc.contributor.authorCampbell, Claireen_UK
dc.contributor.authorDinsmore, Kerry Jen_UK
dc.contributor.authorDrewer, Juliaen_UK
dc.contributor.authorCoyle, Mhairien_UK
dc.contributor.authorAnderson, Margareten_UK
dc.contributor.authorSkiba, Ute Men_UK
dc.contributor.authorNemitz, Eikoen_UK
dc.contributor.authorBillett, Michaelen_UK
dc.contributor.authorSutton, Mark Aen_UK
dc.description.abstractLand–atmosphere exchange of carbon dioxide (CO2) in peatlands exhibits marked seasonal and inter-annual variability, which subsequently affects the carbon (C) sink strength of catchments across multiple temporal scales. Long-term studies are needed to fully capture the natural variability and therefore identify the key hydrometeorological drivers in the net ecosystem exchange (NEE) of CO2. Since 2002, NEE has been measured continuously by eddy-covariance at Auchencorth Moss, a temperate lowland peatland in central Scotland. Hence this is one of the longest peatland NEE studies to date. For 11 years, the site was a consistent, yet variable, atmospheric CO2 sink ranging from −5.2 to −135.9 g CO2-C m−2yr−1(mean of −64.1 ± 33.6 g CO2-C m−2yr−1). Inter-annual variability in NEE was positively correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating an effect of winter climate on local phenology. Ecosystem respiration (Reco) was enhanced by drought, which also depressed gross primary productivity (GPP). The CO2 uptake rate during the growing season was comparable to three other sites with long-term NEE records; however, the emission rate during the dormant season was significantly higher. To summarise, the NEE of the peatland studied is modulated by two dominant factors: - phenology of the plant community, which is driven by winter air temperature and impacts photosynthetic potential and net CO2 uptake during the growing season (colder winters are linked to lower summer NEE), - water table level, which enhanced soil respiration and decreased GPP during dry spells. Although summer dry spells were sporadic during the study period, the positive effects of the current climatic trend towards milder winters on the site's CO2 sink strength could be offset by changes in precipitation patterns especially during the growing season.en_UK
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen_UK
dc.relationHelfter C, Campbell C, Dinsmore KJ, Drewer J, Coyle M, Anderson M, Skiba UM, Nemitz E, Billett M & Sutton MA (2015) Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences, 12 (6), pp. 1799-1811.
dc.rights© Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 Licenseen_UK
dc.titleDrivers of long-term variability in CO2 net ecosystem exchange in a temperate peatlanden_UK
dc.typeJournal Articleen_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationScottish Environment Protection Agency (SEPA)en_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationCentre for Ecology & Hydrology (CEH)en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
local.rioxx.authorHelfter, Carole|en_UK
local.rioxx.authorCampbell, Claire|en_UK
local.rioxx.authorDinsmore, Kerry J|en_UK
local.rioxx.authorDrewer, Julia|en_UK
local.rioxx.authorCoyle, Mhairi|en_UK
local.rioxx.authorAnderson, Margaret|en_UK
local.rioxx.authorSkiba, Ute M|en_UK
local.rioxx.authorNemitz, Eiko|en_UK
local.rioxx.authorBillett, Michael|0000-0003-3737-6063en_UK
local.rioxx.authorSutton, Mark A|en_UK
local.rioxx.projectInternal Project|University of Stirling|
local.rioxx.filenameHelfter et al_Biogeosciences_2015.pdfen_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Helfter et al_Biogeosciences_2015.pdfFulltext - Published Version2.62 MBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.