Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/19632
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European seabass (Dicentrarchus labrax)
Author(s): Del Pozo, Ana
Vera, LM
Sanchez, Jose A
Sanchez-Vazquez, F Javier
Contact Email: luisa.veraandujar@stir.ac.uk
Keywords: Circadian rhythm
cry
Cryptochrome
Molecular clock
Sea bass
Issue Date: Nov-2012
Date Deposited: 27-Mar-2014
Citation: Del Pozo A, Vera L, Sanchez JA & Sanchez-Vazquez FJ (2012) Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 163 (3-4), pp. 364-371. https://doi.org/10.1016/j.cbpa.2012.07.004
Abstract: Biological rhythms are driven by circadian oscillators, which are ultimately controlled by the cyclic expression of clock genes. Cryptochromes (CRY), blue light photoreceptors, belong to the negative elements of the transcriptional feedback loop into the molecular clock. This paper describes the cloning and characterization of two cryptochromes (cry1 and 2) in European seabass, which is considered an interesting chronobiology model due to its dual (diurnal/nocturnal) behavior. The cloned cDNA fragments encoded for two proteins of 567 and 668 amino acids, which included the FAD-binding and the DNA-photolyase domains. Moreover, both proteins had a high homology with cryptochrome proteins (Cry) of other teleost fish. These cry1 and 2 genes were expressed in several tissues of seabass (brain, liver, heart, retina, muscle, spleen, gill and intestine). In addition, the daily expression of cry1 was rhythmic in brain, heart and liver with the acrophase around ZT 03:15 h (after the onset of lights). Similarly, the cry2 daily expression was rhythmic in liver, peaking at ZT 03:28 h, whereas in brain the acrophase was at ZT 11:08 h (shortly prior to the offset of lights). These findings provide new elements to help understanding the functioning of the molecular clock of seabass.
DOI Link: 10.1016/j.cbpa.2012.07.004
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
Comp Biochem Physiol A 2012.pdfFulltext - Published Version1.08 MBAdobe PDFUnder Permanent Embargo    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.