Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/10332
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Peer Review Status: | Refereed |
Title: | Bifurcations of equilibria of a non-linear age structured model |
Author(s): | Farkas, Jozsef Zoltan |
Contact Email: | jozsef.farkas@stir.ac.uk |
Keywords: | stability of equilibria bifurcation |
Issue Date: | 2004 |
Date Deposited: | 17-Dec-2012 |
Citation: | Farkas JZ (2004) Bifurcations of equilibria of a non-linear age structured model. Miskolc Mathematical Notes, 5 (2), pp. 187-192. http://mat76.mat.uni-miskolc.hu/~mnotes/show_article.php?volume=5&number=2&article_id=85&details=Details&location=files%2F5-2%2F5-2-farkas-j.pdf |
Abstract: | M. E. Gurtin and R. C. MacCamy investigated a non-linear age-structured population dynamical model, which served as one of the basic non-linear population dynamical models in the last three decades. They described a characteristic equation but they did not use it to discuss stability of equilibria of the system in certain special cases. In a recent paper, M. Farkas deduced a characteristic equation in another form. This characteristic equation enabled us to prove results about the stability of stationary age distributions of the system. In the present paper we are going to investigate how equilibria arise and change their stability as a basic parameter of the system varies. |
URL: | http://mat76.mat.uni-miskolc.hu/~mnotes/show_article.php?volume=5&number=2&article_id=85&details=Details&location=files%2F5-2%2F5-2-farkas-j.pdf |
Rights: | Publisher allows this work to be made available in this repository. Published in Miskolc Mathematical Notes [non valid], 5 (2), pp. 187-192, by the University of Miskolc, http://mat76.mat.uni-miskolc.hu/~mnotes/show_article.php?volume=5&number=2&article_id=85&details=Details&location=files%2F5-2%2F5-2-farkas-j.pdf |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Farkas_MiskolcMathNotes_2004.pdf | Fulltext - Published Version | 102.16 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.