Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/10332
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.date.accessioned2013-01-09T14:13:14Z-
dc.date.available2013-01-09T14:13:14Z-
dc.date.issued2004en_UK
dc.identifier.urihttp://hdl.handle.net/1893/10332-
dc.description.abstractM. E. Gurtin and R. C. MacCamy investigated a non-linear age-structured population dynamical model, which served as one of the basic non-linear population dynamical models in the last three decades. They described a characteristic equation but they did not use it to discuss stability of equilibria of the system in certain special cases. In a recent paper, M. Farkas deduced a characteristic equation in another form. This characteristic equation enabled us to prove results about the stability of stationary age distributions of the system. In the present paper we are going to investigate how equilibria arise and change their stability as a basic parameter of the system varies.en_UK
dc.language.isoenen_UK
dc.publisherMiskolci Egyetemi Kiadó / University of Miskolc Pressen_UK
dc.relationFarkas JZ (2004) Bifurcations of equilibria of a non-linear age structured model. Miskolc Mathematical Notes, 5 (2), pp. 187-192. http://mat76.mat.uni-miskolc.hu/~mnotes/show_article.php?volume=5&number=2&article_id=85&details=Details&location=files%2F5-2%2F5-2-farkas-j.pdfen_UK
dc.rightsPublisher allows this work to be made available in this repository. Published in Miskolc Mathematical Notes [non valid], 5 (2), pp. 187-192, by the University of Miskolc, http://mat76.mat.uni-miskolc.hu/~mnotes/show_article.php?volume=5&number=2&article_id=85&details=Details&location=files%2F5-2%2F5-2-farkas-j.pdfen_UK
dc.subjectstability of equilibriaen_UK
dc.subjectbifurcationen_UK
dc.titleBifurcations of equilibria of a non-linear age structured modelen_UK
dc.typeJournal Articleen_UK
dc.citation.jtitleMiskolc Mathematical Notesen_UK
dc.citation.issn1787-2413en_UK
dc.citation.issn1787-2405en_UK
dc.citation.volume5en_UK
dc.citation.issue2en_UK
dc.citation.spage187en_UK
dc.citation.epage192en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://mat76.mat.uni-miskolc.hu/~mnotes/show_article.php?volume=5&number=2&article_id=85&details=Details&location=files%2F5-2%2F5-2-farkas-j.pdfen_UK
dc.author.emailjozsef.farkas@stir.ac.uken_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.wtid740059en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dcterms.dateAccepted2004-12-31en_UK
dc.date.filedepositdate2012-12-17en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2012-12-17en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2012-12-17|en_UK
local.rioxx.filenameFarkas_MiskolcMathNotes_2004.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1787-2405en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Farkas_MiskolcMathNotes_2004.pdfFulltext - Published Version102.16 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.