Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/32677
Appears in Collections: | Computing Science and Mathematics Journal Articles Psychology Journal Articles |
Peer Review Status: | Refereed |
Title: | Predicting range shifts of African apes under global change scenarios |
Author(s): | Carvalho, Joana S Graham, Bruce Bocksberger, Gaёlle Maisels, Fiona Williamson, Elizabeth A Wich, Serge Sop, Tenekwetche Amarasekaran, Bala Barca, Benjamin Barrie, Abdulai Bergl, Richard A Boesch, Christophe Boesch, Hedwige Brncic, Terry M Morgan, Bethan J |
Contact Email: | e.a.williamson@stir.ac.uk |
Keywords: | bonobo chimpanzee climate change gorilla great ape human population scenarios IUCN SSC A.P.E.S. database land use change protected areas species distribution modelling |
Issue Date: | Sep-2021 |
Date Deposited: | 8-Jun-2021 |
Citation: | Carvalho JS, Graham B, Bocksberger G, Maisels F, Williamson EA, Wich S, Sop T, Amarasekaran B, Barca B, Barrie A, Bergl RA, Boesch C, Boesch H, Brncic TM & Morgan BJ (2021) Predicting range shifts of African apes under global change scenarios. Diversity and Distributions, 27 (9), pp. 1663-1679. https://doi.org/10.1111/ddi.13358 |
Abstract: | Aim Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location Tropical Africa. Methods We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa's current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad. |
DOI Link: | 10.1111/ddi.13358 |
Rights: | © 2021 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ddi.13358.pdf | Fulltext - Published Version | 762.39 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.