Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/21399
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites
Authors: Simon-Delso, Noa
Amaral-Rogers, Vanessa
Belzunces, Luc P
Bonmatin, Jean-Marc
Chagnon, Madeleine
Downs, Craig
Furlan, Lorenzo
Gibbons, David W
Giorio, Chiara
Girolami, Vincenzo
Goulson, Dave
Kreutzweiser, David P
Krupke, Christian H
Liess, Matthias
Whitehorn, Penelope R
Contact Email: p.r.whitehorn@stir.ac.uk
Keywords: Neonicotinoid
Fipronil
Trends
Mechanism of action
Agriculture
Seed treatment
Systemic insecticides
Metabolites
Issue Date: Jan-2015
Publisher: Springer
Citation: Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin J, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M & Whitehorn PR (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites, Environmental Science and Pollution Research, 22 (1), pp. 5-34.
Abstract: Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Type: Journal Article
URI: http://hdl.handle.net/1893/21399
DOI Link: http://dx.doi.org/10.1007/s11356-014-3470-y
Rights: Copyright The Author(s) 2014. This article is published with open access at Springerlink.com
Notes: Additional co-authors: E. Long, M. McField, P. Mineau, E. A. D. Mitchell, C. A. Morrissey, D. A. Noome, L. Pisa, J. Settele, J. D. Stark, A. Tapparo, H. Van Dyck, J. Van Praagh, J. P. Van der Sluijs, M. Wiemers
Affiliation: Utrecht University
Buglife
French National Institute for Agricultural Research (INRA)
The National Center for Scientific Research (CNRS)
University of Quebec in Montreal (UQAM)
Haereticus Environmental Laboratory
Veneto Agricoltura
Royal Society for the Protection of Birds (RSPB)
University of Cambridge
University of Padova
University of Sussex
Natural Resources Canada
Purdue University
Helmholtz Centre for Environmental Research-UFZ, Germany
Biological and Environmental Sciences

Files in This Item:
File Description SizeFormat 
Environ Sci Pollut Res 2015.pdf1.62 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.