Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Ecosystem feedbacks and cascade processes: understanding their role in the responses of arctic and alpine ecosystems to environmental change
Author(s): Wookey, Philip
Aerts, Rien
Bardgett, Richard D
Baptist, Florence
Brathen, Kari Anne
Cornelissen, J Hans C
Gough, Laura
Hartley, Iain
Hopkins, David
Lavorel, Sandra
Shaver, Gaius R
Contact Email:
Keywords: Arctic
Global change
Plant functional type
Issue Date: May-2009
Citation: Wookey P, Aerts R, Bardgett RD, Baptist F, Brathen KA, Cornelissen JHC, Gough L, Hartley I, Hopkins D, Lavorel S & Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of arctic and alpine ecosystems to environmental change, Global Change Biology, 15 (5), pp. 1153-1172.
Abstract: Global environmental change, related to climate change and the deposition of airborne N-containing contaminants, has already resulted in shifts in plant community composition among plant functional types in arctic and temperate alpine regions. In this paper, we review how key ecosystem processes will be altered by these transformations, the complex biological cascades and feedbacks that may result, and some of the potential broader consequences for the earth system. Firstly, we consider how patterns of growth and allocation, and nutrient uptake, will be altered by the shifts in plant dominance. The ways in which these changes may disproportionately affect the consumer communities, and rates of decomposition, are then discussed. We show that the occurrence of a broad spectrum of plant growth forms in these regions (from cryptogams to deciduous and evergreen dwarf shrubs, graminoids and forbs), together with hypothesized low functional redundancy, will mean that shifts in plant dominance result in a complex series of biotic cascades, couplings and feedbacks which are supplemental to the direct responses of ecosystem components to the primary global change drivers. The nature of these complex interactions is highlighted using the example of the climate-driven increase in shrub cover in low arctic tundra, and the contrasting transformations in plant functional composition in mid-latitude alpine systems. Finally, the potential effects of the transformations on ecosystem properties and processes which link with the earth system are reviewed. We conclude that the effects of global change on these ecosystems, and potential climate-change feedbacks, can not be predicted from simple empirical relationships between processes and driving variables. Rather, the effects of changes in species distributions and dominances on key ecosystem processes and properties must also be considered, based upon best estimates of the trajectories of key transformations, their magnitude and rates of change.
DOI Link:
Rights: Published by Blackwell Publishing, copyright 2008. The definitive version is available at

Files in This Item:
File Description SizeFormat 
WookeyManuscript_final_.pdf267.99 kBAdobe PDFView/Open
Wookey_Fig2(GCB_08_228).tif81.94 MBTIFFView/Open
Wookey_Fig1(GCB_08_228).tif82.41 MBTIFFView/Open
Wookey_Plate1(GCB_08_228).tif25.51 MBTIFFView/Open

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.