Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/9281
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalsina, Angelen_UK
dc.contributor.authorFarkas, Jozsef Zoltanen_UK
dc.date.accessioned2013-06-10T23:44:33Z-
dc.date.available2013-06-10T23:44:33Z-
dc.date.issued2012-09en_UK
dc.identifier.urihttp://hdl.handle.net/1893/9281-
dc.description.abstractWe introduce a non-linear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compartment that carries mass; hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for e.g., Wolbachia in a mosquito population. Therefore, the (infinite dimensional) non-linearity arises in the recruitment term. First, we establish global existence of solutions and the principle of linearised stability for our model. Then, in our main result, we formulate simple conditions which guarantee the existence of non-trivial steady states of the model. Our method utilises an operator theoretic framework combined with a fixed-point approach. Finally in the last section, we establish a sufficient condition for the local asymptotic stability of the positive steady state.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Verlagen_UK
dc.relationCalsina A & Farkas JZ (2012) Steady states in a structured epidemic model with Wentzell boundary condition. Journal of Evolution Equations, 12 (3), pp. 495-512. https://doi.org/10.1007/s00028-012-0142-6en_UK
dc.rightsPublisher policy allows this work to be made available in this repository. Published in Journal of Evolution Equations, Volume 12, Number 3 (2012), pp.495-512, DOI: 10.1007/s00028-012-0142-6 by Springer. The final publication is available at www.springerlink.comen_UK
dc.subjectStructured populationsen_UK
dc.subjectDiffusionen_UK
dc.subjectWentzell-Robin boundary conditionen_UK
dc.subjectSteady statesen_UK
dc.subjectSpectral methodsen_UK
dc.subjectEcology Mathematicsen_UK
dc.titleSteady states in a structured epidemic model with Wentzell boundary conditionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s00028-012-0142-6en_UK
dc.citation.jtitleJournal of Evolution Equationsen_UK
dc.citation.issn1424-3202en_UK
dc.citation.issn1424-3199en_UK
dc.citation.volume12en_UK
dc.citation.issue3en_UK
dc.citation.spage495en_UK
dc.citation.epage512en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailjzf@maths.stir.ac.uken_UK
dc.contributor.affiliationUniversitat Autonoma de Barcelonaen_UK
dc.contributor.affiliationMathematicsen_UK
dc.identifier.isiWOS:000307890200001en_UK
dc.identifier.scopusid2-s2.0-84865797939en_UK
dc.identifier.wtid762155en_UK
dc.contributor.orcid0000-0002-8794-4834en_UK
dcterms.dateAccepted2012-09-30en_UK
dc.date.filedepositdate2012-10-01en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCalsina, Angel|en_UK
local.rioxx.authorFarkas, Jozsef Zoltan|0000-0002-8794-4834en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2012-10-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2012-10-01|en_UK
local.rioxx.filenamediffusion-Dec6.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1424-3199en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
diffusion-Dec6.pdfFulltext - Accepted Version346.12 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.