Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/8761
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Twentieth century changes of tree-ring delta C-13 at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes
Author(s): Penuelas, Josep
Hunt, Jenny M
Ogaya, Roma
Jump, Alistair
Contact Email: a.s.jump@stir.ac.uk
Keywords: delta(13) C
basal area increment
climate change
CO2
drought
European beech
Fagus sylvatica
geographical range
Mediterranean
range edge
Atmospheric carbon dioxide Environmental aspects
Issue Date: May-2008
Date Deposited: 31-Aug-2012
Citation: Penuelas J, Hunt JM, Ogaya R & Jump A (2008) Twentieth century changes of tree-ring delta C-13 at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14 (5), pp. 1076-1088. https://doi.org/10.1111/j.1365-2486.2008.01563.x
Abstract: We aimed to gain knowledge on the changes in intrinsic water use efficiency (iWUE) in response to increasing atmospheric CO2 concentrations and climate change over the last century. We investigated the variation in the iWUE of mature Fagus sylvatica trees located in the higher, central and lower altitudinal forest limits (HFL, CFA and LFL) of one of the southernmost sites of beech distribution in Europe, the Montseny Mountains in Catalonia (northeast Spain), during the last century by analysing the δ13C of their tree rings. Pre- and post-maturation phases of the trees presented different trends in δ13C, Δ13C, Ci (internal CO2 concentration), iWUE and basal area increment (BAI). Moreover, these variables showed different trends and absolute values in the LFL than in the other altitudinal sites, CFA and HFL. Our results show the existence of an age effect on δ13C in the CFA and HFL (values increased by ca. 1.25‰ coinciding with the BAI suppression and release phases, previous to maturation). These age-related changes were not found in the LFL, whose beech trees arrived to maturation earlier and experienced drier conditions during the suppression phase. In the last 26 years of comparable mature trees, the increase of iWUE deduced from the Δ13C analyses was ca. 10% in LFL, ca. 6% in CFA and not significant in HFL. These results show that climate change towards more arid conditions accounted for these higher Δ13C-values and increases in the LFL more than the continuous increase in atmospheric CO2 concentrations. This increased iWUE in the LFL did not avoid a decline in growth in these lowest altitudes of this beech southern range-edge as a result of warming. Furthermore, since there was no apparent change in iWUE and growth in the beech forests growing in the more standard-adequate environments of higher altitudes in the last 26 years, the rate of sequestration of C into temperate ecosystems may not increase with increasing atmospheric CO2 concentrations as predicted by most models based on short-term small scale experiments.
DOI Link: 10.1111/j.1365-2486.2008.01563.x
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
Penuelas et al 2008_GCB.pdfFulltext - Published Version522.08 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.