Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Landscape-scale controls on the spatial distribution of caesium 137: A study based on an airborne geophysical survey across Northern Ireland
Author(s): Rawlins, Barry G
Scheib, Cathy
Beamish, David
Webster, Richard
Tyler, Andrew
Young, Michael E
Contact Email:
Keywords: caesium 137
Northern Ireland
wet deposition
Issue Date: Feb-2011
Date Deposited: 29-Aug-2012
Citation: Rawlins BG, Scheib C, Beamish D, Webster R, Tyler A & Young ME (2011) Landscape-scale controls on the spatial distribution of caesium 137: A study based on an airborne geophysical survey across Northern Ireland. Earth Surface Processes and Landforms, 36 (2), pp. 158-169.;
Abstract: The spatial distribution of 137Cs across the landscape and the processes controlling its redistribution are of interest because (i) 137Cs has been widely used to quantify the movement of soil and sediments and (ii) substantial fallout of 137Cs after the Chernobyl accident has led to contamination of foodstuffs in some places. A high-resolution airborne geophysical radiometric survey of Northern Ireland has provided an opportunity to study the distribution and possible redistribution of 137Cs. The 137Cs activity (recorded at 1·2 million points) is distributed in a series of bands oriented approximately 160° and 115° clockwise from north. Geostatistical analysis of the data shows a strong, short-range structure (correlation ranges between 0·6 and 8 km) in 137Cs activity across the vast majority of the region; the spatial distribution shows association with a published, coarse-scale depositional pattern of 137Cs from Chernobyl. Two indices of land form derived from a digital elevation model, namely compound topographic index and the length-slope factor of the Revised Universal Soil Loss Equation, account for only 3% of the variance in 137Cs activity. In contrast, soil type and land cover in combination (including their interaction) account for 20% of the variance. In areas that received moderate fallout from Chernobyl, soil type alone accounts for a substantial proportion of the spatially correlated 137Cs activity. We attribute this to each soil type having a fairly uniform radiocaesium interception potential that differs from those of other soil types and that this potential controls the vertical migration of 137Cs. Over the granitic Mourne Mountains there is a strong spatial cross-correlation between 137Cs activity and airborne estimates of soil potassium, suggesting that the latter provides a measure of the soil's radiocaesium interception potential; this is probably dominated by the quantity of the mineral illite.
DOI Link: 10.1002/esp.2026
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s):

Files in This Item:
File Description SizeFormat 
2026_ftp.pdfFulltext - Published Version1.85 MBAdobe PDFUnder Embargo until 2999-12-25    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.