Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/7621
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFonseca-Madrigal, Jorge-
dc.contributor.authorPineda-Delgado, D-
dc.contributor.authorMartinez-Palacios, Carlos A-
dc.contributor.authorRodriguez, Covadonga-
dc.contributor.authorTocher, Douglas R-
dc.date.accessioned2015-07-23T03:57:00Z-
dc.date.available2015-07-23T03:57:00Z-
dc.date.issued2012-08-
dc.identifier.urihttp://hdl.handle.net/1893/7621-
dc.description.abstractThe genus Chirostoma (silversides) belongs to the family Atherinopsidae, which contains around 150 species, most of which are marine. However, Mexican silverside (Chirostoma estor) is one of the few representatives of freshwater atherinopsids and is only found in some lakes of the Mexican Central Plateau. However, studies have shown that C. estor has improved survival, growth and development when cultured in water conditions with increased salinity. In addition, C. estor displays an unusual fatty acid composition for a freshwater fish with high docosahexaenoic acid (DHA) : eicosapentaenoic acid (EPA) ratios. Freshwater and marine fish species display very different essential fatty acid metabolism and requirements and so the present study investigated long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis to determine the capacity of C. estor for endogenous production of EPA and DHA, and the effect that salinity has on these pathways. Briefly, C. estor were maintained at three salinities (0, 5 and 15 ppt) and the metabolism of 14C-labelled 18:3n-3 determined in isolated hepatocyte and enterocyte cells. The results showed that C. estor has the capacity for endogenous biosynthesis of LC-PUFA from 18-carbon fatty acid precursors, but that the pathway was essentially only active in saline conditions with virtually no activity in cells isolated from fish grown in freshwater. The activity of the LCPUFA biosynthesis pathway was also higher in cells isolated from fish at 15 ppt compared to fish at 5 ppt, The pathway was around 5-fold higher in hepatocytes compared to enterocytes, although the majority of 18:3n-3 was converted to 18:4n-3 and 20:4n-3 in hepatocytes whereas the proportions of 18:3n-3 converted to EPA and DHA were higher in enterocytes. The data were consistent with the hypothesis that conversion of EPA to DHA could contribute, at least in part, to the generally high DHA:EPA ratios observed in the tissue lipids of C. estor.en_UK
dc.language.isoen-
dc.publisherSpringer-
dc.relationFonseca-Madrigal J, Pineda-Delgado D, Martinez-Palacios CA, Rodriguez C & Tocher DR (2012) Effect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estor, Fish Physiology and Biochemistry, 38 (4), pp. 1047-1057.-
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this work to be made available in this repository. Published in Fish Physiology and Biochemistry by Springer Verlag. The original publication is available at www.springerlink.com. DOI: 10.1007/s10695-011-9589-6-
dc.subjectChirostoma estoren_UK
dc.subjectMenidia estoren_UK
dc.subjectLong-chain polyunsaturated fatty acidsen_UK
dc.subjectBiosynthesisen_UK
dc.subjectDesaturationen_UK
dc.subjectElongationen_UK
dc.subjectSalinityen_UK
dc.titleEffect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estoren_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2013-08-31T00:00:00Z-
dc.rights.embargoreasonThe publisher requires a 12 month embargo on this article.-
dc.identifier.doihttp://dx.doi.org/10.1007/s10695-011-9589-6-
dc.citation.jtitleFish Physiology and Biochemistry-
dc.citation.issn0920-1742-
dc.citation.volume38-
dc.citation.issue4-
dc.citation.spage1047-
dc.citation.epage1057-
dc.citation.publicationstatusPublished-
dc.citation.peerreviewedRefereed-
dc.type.statusPost-print (author final draft post-refereeing)-
dc.author.emaildrt1@stir.ac.uk-
dc.citation.date15/01/2012-
dc.contributor.affiliationUniversity of Stirling-
dc.contributor.affiliationMichoacan University of San Nicolas de Hildalgo (UMSNH)-
dc.contributor.affiliationMichoacan University of San Nicolas de Hildalgo (UMSNH)-
dc.contributor.affiliationUniversity of La Laguna-
dc.contributor.affiliationAquaculture-
dc.identifier.isi000305980200013-
Appears in Collections:Aquaculture Journal Articles

Files in This Item:
File Description SizeFormat 
Fonseca-Madrigal full paper.pdf705.81 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.