Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFenton, Andrewen_UK
dc.contributor.authorFairbairn, Jonathan Pen_UK
dc.contributor.authorNorman, Rachelen_UK
dc.contributor.authorHudson, Peter Jen_UK
dc.description.abstract1 Arguably the most important and elusive component of host-parasite models is the transmission function. Considerable empirical and theoretical work has focused on determining the correct formulation of this function although, to date, there has been little attempt to combine these studies to develop general insights into how observed transmission rates affect host-parasite dynamics. 2 Here, estimates of transmission rates from a range of host-parasite systems in the literature are described using a phenomenological function which takes into account how transmission varies with host and parasite densities. This function is placed in the appropriate model framework to determine the consequences of the observed transmission rates for each system. 3 All of the parasites had decreasing per capita transmission rates with increasing parasite densities suggesting that parasites tend to saturate at high densities, either as hosts become limiting or due to heterogeneities amongst the host population. In terms of the responses to host density, the parasites fell into two groups: those with increasing or decreasing transmission rates. This dichotomy was due to the biology of the organisms; the former group infect through cannibalism, which increased at high densities as the individuals became stressed, whereas the latter group infected through free-living stages, resulting in a form of spatial structuring reducing the number of hosts available for infection. 4 A metapopulation model was developed where hosts and parasites interacted in discrete patches according to the appropriate transmission function, with neighbouring patches linked by dispersal. The model suggested that small-scale, localized transmission events can drive large-scale epizootics at the metapopulation level. This emphasizes the importance of correctly describing and quantifying the transmission function at the individual level. 5 Traditionally, the formulation of the transmission function has depended on the scale of observation. This work shows that transmission should be considered from the viewpoint of the organisms concerned. Observed transmission rates are a consequence of the biology of the individuals meaning it should be possible to develop a priori hypotheses concerning the nature of the transmission function from a basic understanding of the life history of the organisms concerned.en_UK
dc.publisherJohn Wiley & Sonsen_UK
dc.relationFenton A, Fairbairn JP, Norman R & Hudson PJ (2002) Parasite transmission: reconciling theory and reality. Journal of Animal Ecology, 71 (5), pp. 893-905.;
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.subjectnon-linear transmissionen_UK
dc.subjectparasite persistenceen_UK
dc.subjectspatial modelen_UK
dc.titleParasite transmission: reconciling theory and realityen_UK
dc.typeJournal Articleen_UK
dc.rights.embargoreason[fentonetaltransmissiontermspaper.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.citation.jtitleJournal of Animal Ecologyen_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
rioxxterms.typeJournal Article/Reviewen_UK
local.rioxx.authorFenton, Andrew|en_UK
local.rioxx.authorFairbairn, Jonathan P|en_UK
local.rioxx.authorNorman, Rachel|0000-0002-7398-6064en_UK
local.rioxx.authorHudson, Peter J|en_UK
local.rioxx.projectInternal Project|University of Stirling|
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
fentonetaltransmissiontermspaper.pdfFulltext - Published Version386.89 kBAdobe PDFUnder Embargo until 2999-12-07    Request a copy

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.