http://hdl.handle.net/1893/7166
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Can flower constancy in nectaring butterflies be explained by Darwin's interference hypothesis? |
Author(s): | Goulson, Dave Stout, Jane C Hawson, Sadie A |
Contact Email: | dave.goulson@stir.ac.uk |
Keywords: | foraging efficiency majoring butterfly reward learning |
Issue Date: | Oct-1997 |
Date Deposited: | 1-Aug-2012 |
Citation: | Goulson D, Stout JC & Hawson SA (1997) Can flower constancy in nectaring butterflies be explained by Darwin's interference hypothesis?. Oecologia, 112 (2), pp. 225-231. https://doi.org/10.1007/s004420050304 |
Abstract: | When foraging for nectar many insects exhibit flower constancy (a preference for flower species which they have previously visited) and frequently ignore rewarding flowers of other species. Darwin proposed the favoured explanation for this behaviour, hypothesizing that learning of handling skills for one flower species interferes with the ability to recall handling skills for previously learned species. A crucial element of this hypothesis is that savings in handling time resulting from constancy must exceed increases in travelling time necessitated by ignoring other suitable species. A convincing quantification of this trade-off has not been achieved and tests to date on bumblebees indicate that savings in handling time are too small to offset an increase in travelling time. To assess further the validity of Darwin’s hypothesis, handling and flight times of the butterfly, Thymelicus flavus, were measured under natural conditions, and the abundance and reward provided by the available flower species quantified to enable estimation of foraging efficiency. Butterflies exhibited a mean increase in handling time of 0.85 s per flower associated with switching between flower species, although the magnitude of this difference varied greatly among flower species. Switching was not associated with a decrease in travelling time, contrary to expectation. Switching was more frequent following a lower than average reward from the last flower visited. In butterflies, flights serve functions other than movement between nectar sources, such as mate location (unlike worker bees). Hence constancy may be a viable strategy to reduce time spent in handling flowers and increase time available for other activities. Although savings in handling time may be small, Darwin’s interference hypothesis remains a valid explanation for flower constancy in foraging butterflies. |
DOI Link: | 10.1007/s004420050304 |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
goulson_flower_constancy.pdf | Fulltext - Published Version | 533.66 kB | Adobe PDF | Under Embargo until 3000-01-01 Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.