Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/3950
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwingler, Kevinen_UK
dc.date.accessioned2016-12-06T22:13:25Z-
dc.date.available2016-12-06T22:13:25Z-
dc.date.issued2011en_UK
dc.identifier.urihttp://hdl.handle.net/1893/3950-
dc.description.abstractThe quality and quantity (we call it suitability from now on) of data that are used for a machine learning task are as important as the capability of the machine learning algorithm itself. Yet these two aspects of machine learning are not given equal weight by the data mining, machine learning and neural computing communities. Data suitability is largely ignored compared to the effort expended on learning algorithm development. This position paper argues that some of the new algorithms and many of the tweaks to existing algorithms would be unnecessary if the data going into them were properly pre-processed, and calls for a shift in effort towards data suitability assessment and correction.en_UK
dc.language.isoenen_UK
dc.publisherSciTePress Digital Libraryen_UK
dc.relationSwingler K (2011) The Perils of Ignoring Data Suitability: The Suitability of Data Used to Train Neural Networks Deserves More Attention In: NCTA 2011 - International Conference on Neural Computation Theory and Application. International Conference on Neural Computation Theory and Application, Paris, France, 24.10.2011-26.10.2011. SciTePress Digital Library. http://www.ncta.ijcci.org/Abstracts/2011/NCTA_2011_Abstracts.htm.en_UK
dc.rightsPermission granted for use in this repository by The Institute for Systems and Technologies of Information, Control and Communication (INSTICC): http://www.insticc.org/InsticcPortal/Home.aspxen_UK
dc.subjectData Preparationen_UK
dc.subjectMachine Learningen_UK
dc.subjectData Miningen_UK
dc.subjectData Quality and Quantityen_UK
dc.subjectElectronic data processing Data preparationen_UK
dc.subjectComputer input-output equipmenten_UK
dc.titleThe Perils of Ignoring Data Suitability: The Suitability of Data Used to Train Neural Networks Deserves More Attentionen_UK
dc.typeConference Paperen_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.ncta.ijcci.org/Abstracts/2011/NCTA_2011_Abstracts.htmen_UK
dc.author.emailkms@cs.stir.ac.uken_UK
dc.citation.btitleNCTA 2011 - International Conference on Neural Computation Theory and Applicationen_UK
dc.citation.conferencedates2011-10-24 - 2011-10-26en_UK
dc.citation.conferencelocationParis, Franceen_UK
dc.citation.conferencenameInternational Conference on Neural Computation Theory and Applicationen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-84862180027en_UK
dc.identifier.wtid771384en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dc.date.firstcompliantdepositdate2012-03-30en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
DataqualityNCTA_CameraReady.pdfFulltext - Accepted Version63.24 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.