Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36914
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcLean, Kenneth Aen_UK
dc.contributor.authorSgro, Alessandroen_UK
dc.contributor.authorBrown, Leo Ren_UK
dc.contributor.authorBuijs, Louis Fen_UK
dc.contributor.authorMountain, Katie Een_UK
dc.contributor.authorShaw, Catherine Aen_UK
dc.contributor.authorDrake, Thomas Men_UK
dc.contributor.authorPius, Riinuen_UK
dc.contributor.authorKnight, Stephen Ren_UK
dc.contributor.authorFairfield, Cameron Jen_UK
dc.contributor.authorSkipworth, Richard J Een_UK
dc.contributor.authorTsaftaris, Sotirios Aen_UK
dc.contributor.authorWigmore, Stephen Jen_UK
dc.contributor.authorPotter, Mark Aen_UK
dc.contributor.authorBouamrane, Matt-Mouleyen_UK
dc.date.accessioned2025-03-19T01:30:36Z-
dc.date.available2025-03-19T01:30:36Z-
dc.date.issued2025en_UK
dc.identifier.other121en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36914-
dc.description.abstractRemote monitoring is essential for healthcare digital transformation, however, this poses greater burdens on healthcare providers to review and respond as the data collected expands. This study developed a multimodal neural network to automate assessments of patient-generated data from remote postoperative wound monitoring. Two interventional studies including adult gastrointestinal surgery patients collected wound images and patient-reported outcome measures (PROMs) for 30-days postoperatively. Neural networks for PROMs and images were combined to predict surgical site infection (SSI) diagnosis within 48 hours. The multimodal neural network model to predict confirmed SSI within 48h remained comparable to clinician triage (0.762 [0.690-0.835] vs 0.777 [0.721-0.832]), with an excellent performance on external validation. Simulated usage indicated an 80% reduction in staff time (51.5 to 9.1 hours) without compromising diagnostic accuracy. This multimodal approach can effectively support remote monitoring, alleviating provider burden while ensuring high-quality postoperative care.en_UK
dc.language.isoenen_UK
dc.publisherNature Researchen_UK
dc.relationMcLean KA, Sgro A, Brown LR, Buijs LF, Mountain KE, Shaw CA, Drake TM, Pius R, Knight SR, Fairfield CJ, Skipworth RJE, Tsaftaris SA, Wigmore SJ, Potter MA & Bouamrane M (2025) Multimodal machine learning to predict surgical site infection with healthcare workload impact assessment. <i>npj Digital Medicine</i>, 8, Art. No.: 121. https://doi.org/10.1038/s41746-024-01419-8en_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectMachine Learningen_UK
dc.subjectSurgical Site Infectionsen_UK
dc.subjectRemote Post-operative Monitoringen_UK
dc.subjectTele-Medicineen_UK
dc.subjectPerioperative Medicineen_UK
dc.titleMultimodal machine learning to predict surgical site infection with healthcare workload impact assessmenten_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1038/s41746-024-01419-8en_UK
dc.identifier.pmid39988586en_UK
dc.citation.jtitlenpj Digital Medicineen_UK
dc.citation.issn2398-6352en_UK
dc.citation.issn2398-6352en_UK
dc.citation.volume8en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderMedical Research Councilen_UK
dc.contributor.funderRoyal College of Surgeons of Edinburghen_UK
dc.author.emailmatt-mouley.bouamrane@stir.ac.uken_UK
dc.citation.date23/02/2025en_UK
dc.description.notesAdditional authors: Ewen M Harrison & TWIST Collaborators [K. Baweja, W. A. Cambridge, V. Chauhan, K. Czyzykowska, M. Edirisooriya, A. Forsyth, B. Fox, J. Fretwell, C. Gent, A. Gherman, L. Green, J. Grewar, S. Heelan, D. Henshall, C. Iiuoma, S. Jayasangaran, C. Johnston, E. Kennedy, D. Kremel, J. Kung, J. Kwong, C. Leavy, J. Liu, S. Mackay, A. MacNamara, S. Mowitt, E. Musenga, N. Ng, Z. H. Ng, S. O’Neill, M. Ramage, J. Reed, A. Riad, C. Scott, V. Sehgal, A. Sgrò, L. Steven, B. Stutchfield, S. Tominey, W. Wilson, M. Wojtowicz & J. Yang]en_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationWestern General Hospitalen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationWestern General Hospitalen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationWestern General Hospitalen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.identifier.isiWOS:001431179400001en_UK
dc.identifier.scopusid2-s2.0-85218491716en_UK
dc.identifier.wtid2097153en_UK
dc.date.accepted2024-12-21en_UK
dcterms.dateAccepted2024-12-21en_UK
dc.date.filedepositdate2025-02-06en_UK
dc.subject.tagMedical Informaticsen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMcLean, Kenneth A|en_UK
local.rioxx.authorSgro, Alessandro|en_UK
local.rioxx.authorBrown, Leo R|en_UK
local.rioxx.authorBuijs, Louis F|en_UK
local.rioxx.authorMountain, Katie E|en_UK
local.rioxx.authorShaw, Catherine A|en_UK
local.rioxx.authorDrake, Thomas M|en_UK
local.rioxx.authorPius, Riinu|en_UK
local.rioxx.authorKnight, Stephen R|en_UK
local.rioxx.authorFairfield, Cameron J|en_UK
local.rioxx.authorSkipworth, Richard J E|en_UK
local.rioxx.authorTsaftaris, Sotirios A|en_UK
local.rioxx.authorWigmore, Stephen J|en_UK
local.rioxx.authorPotter, Mark A|en_UK
local.rioxx.authorBouamrane, Matt-Mouley|en_UK
local.rioxx.projectProject ID unknown|Medical Research Council|http://dx.doi.org/10.13039/501100000265en_UK
local.rioxx.projectProject ID unknown|Royal College of Surgeons of Edinburgh|http://dx.doi.org/10.13039/501100000692en_UK
local.rioxx.freetoreaddate2025-03-11en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2025-03-11|en_UK
local.rioxx.filenames41746-024-01419-8.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2398-6352en_UK
dc.description.sdgGood Health and Well-Beingen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
s41746-024-01419-8.pdfFulltext - Published Version1.56 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.