Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36561
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGu, Yuanlinen_UK
dc.contributor.authorWei, Hua-Liangen_UK
dc.date.accessioned2024-12-10T01:01:09Z-
dc.date.available2024-12-10T01:01:09Z-
dc.date.issued2024-06-27en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36561-
dc.description.abstractModeling uncertainty has been an active and important topic in the fields of data-driven modeling and machine learning. Uncertainty ubiquitously exists in any data modeling process, making it challenging to identify the optimal models among many potential candidates. This article proposes an uncertainty-informed method to address the model selection problem. The performance of the proposed method is evaluated on a dataset generated from a complex system model. The experimental results demonstrate the effectiveness of the proposed method and its superiority over conventional approaches. This method has minimal requirements for the length of training data and model types, making it applicable for various modeling frameworks.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationGu Y & Wei H (2024) Uncertainty-Informed Model Selection Method for Nonlinear System Identification and Interpretable Machine Learning. In: <i>Proceedings of 2024 32nd Mediterranean Conference on Control and Automation (MED)</i>. 2024 32nd Mediterranean Conference on Control and Automation (MED), Chania - Crete, Greece, 11.06.2024-14.06.2024. IEEE, pp. 909-914. https://doi.org/10.1109/med61351.2024.10566184en_UK
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectData-driven modelingen_UK
dc.subjectAdaptation modelsen_UK
dc.subjectUncertaintyen_UK
dc.subjectRecurrent neural networksen_UK
dc.subjectTraining dataen_UK
dc.subjectMachine learningen_UK
dc.subjectData modelsen_UK
dc.titleUncertainty-Informed Model Selection Method for Nonlinear System Identification and Interpretable Machine Learningen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/med61351.2024.10566184en_UK
dc.citation.issn2473-3504en_UK
dc.citation.spage909en_UK
dc.citation.epage914en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderScience & Technology Facilities Councilen_UK
dc.contributor.funderNatural Environment Research Councilen_UK
dc.identifier.urlhttps://eprints.whiterose.ac.uk/214151/en_UK
dc.author.emailyuanlin.gu@stir.ac.uken_UK
dc.citation.conferencedates2024-06-11 - 2024-06-14en_UK
dc.citation.conferencelocationChania - Crete, Greeceen_UK
dc.citation.conferencename2024 32nd Mediterranean Conference on Control and Automation (MED)en_UK
dc.citation.date27/06/2024en_UK
dc.citation.isbn979-8-3503-9544-0en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Sheffielden_UK
dc.identifier.scopusid2-s2.0-85198225525en_UK
dc.identifier.wtid2075131en_UK
dc.date.accepted2024-06-11en_UK
dcterms.dateAccepted2024-06-11en_UK
dc.date.filedepositdate2024-11-27en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorGu, Yuanlin|en_UK
local.rioxx.authorWei, Hua-Liang|en_UK
local.rioxx.projectProject ID unknown|Science & Technology Facilities Council|en_UK
local.rioxx.projectProject ID unknown|Natural Environment Research Council|http://dx.doi.org/10.13039/501100000270en_UK
local.rioxx.freetoreaddate2024-12-09en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2024-12-09|en_UK
local.rioxx.filenameMED2024 Uncertainty-infomred model selection (Final Accepted Manuscript).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source979-8-3503-9544-0en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
MED2024 Uncertainty-infomred model selection (Final Accepted Manuscript).pdfFulltext - Accepted Version518.35 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.