Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36236
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonzález Vilas, Luisen_UK
dc.contributor.authorSpyrakos, Evangelosen_UK
dc.contributor.authorPazos, Yolandaen_UK
dc.contributor.authorTorres Palenzuela, Jesus Men_UK
dc.date.accessioned2024-10-03T00:02:51Z-
dc.date.available2024-10-03T00:02:51Z-
dc.date.issued2024-01-11en_UK
dc.identifier.other298en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36236-
dc.description.abstractPseudo-nitzschia spp. blooms are a recurrent problem in many coastal areas globally, imposing some significant threats to the health of humans, ecosystems and the economy. Monitoring programmes have been established, where feasible, to mitigate the impacts caused by Pseudo-nitzschia spp. and other harmful algae blooms. The detection of such blooms from satellite data could really provide timely information on emerging risks but the development of taxa-specific algorithms from available multispectral data is still challenged by coupled optical properties with other taxa and water constituents, availability of ground data and generalisation capabilities of algorithms. Here, we developed a new set of algorithms (PNOI) for the detection and monitoring of Pseudo-nitzschia spp. blooms over the Galician coast (NW Iberian Peninsula) from Sentinel-3 OLCI reflectances using a support vector machine (SVM). Our algorithm was trained and tested with reflectance data from 260 OLCI images and 4607 Pseudo-nitzschia spp. match up data points, of which 2171 were of high quality. The performance of the no bloom/bloom model in the independent test set was robust, showing values of 0.80, 0.72 and 0.79 for the area under the curve (AUC), sensitivity and specificity, respectively. Similar results were obtained by our below detection limit/presence model. We also present different model thresholds based on optimisation of true skill statistic (TSS) and F1-score. PNOI outperforms linear models, while its relationship with in situ chlorophyll-a concentrations is weak, demonstrating a poor correlation with the phytoplankton abundance. We showcase the importance of the PNOI algorithm and OLCI sensor for monitoring the bloom evolution between the weekly ground sampling and during periods of ground data absence, such as due to COVID-19.en_UK
dc.language.isoenen_UK
dc.publisherMDPI AGen_UK
dc.relationGonzález Vilas L, Spyrakos E, Pazos Y & Torres Palenzuela JM (2024) A New Algorithm Using Support Vector Machines to Detect and Monitor Bloom-Forming Pseudo-nitzschia from OLCI Data. <i>Remote Sensing</i>, 16 (2), Art. No.: 298. https://doi.org/10.3390/rs16020298en_UK
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectOLCIen_UK
dc.subjectharmful algal bloomsen_UK
dc.subjectPseudo-nitzschia sppen_UK
dc.subjectsupport vector machineen_UK
dc.subjectmultispectral sensorsen_UK
dc.subjectreflectanceen_UK
dc.subjectGalician riasen_UK
dc.titleA New Algorithm Using Support Vector Machines to Detect and Monitor Bloom-Forming Pseudo-nitzschia from OLCI Dataen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/rs16020298en_UK
dc.citation.jtitleRemote Sensingen_UK
dc.citation.issn2072-4292en_UK
dc.citation.volume16en_UK
dc.citation.issue2en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commission (Horizon 2020)en_UK
dc.author.emailevangelos.spyrakos@stir.ac.uken_UK
dc.citation.date11/01/2024en_UK
dc.contributor.affiliationUniversity of Vigoen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationIndependenten_UK
dc.contributor.affiliationUniversity of Vigoen_UK
dc.identifier.isiWOS:001153017800001en_UK
dc.identifier.scopusid2-s2.0-85183321464en_UK
dc.identifier.wtid1975430en_UK
dc.contributor.orcid0000-0003-0854-8284en_UK
dc.date.accepted2024-01-03en_UK
dcterms.dateAccepted2024-01-03en_UK
dc.date.filedepositdate2024-09-27en_UK
dc.relation.funderprojectCommercial service platform for user-relevant coastal water monitoring services based on Earth observationen_UK
dc.relation.funderref776348en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorGonzález Vilas, Luis|0000-0003-0854-8284en_UK
local.rioxx.authorSpyrakos, Evangelos|en_UK
local.rioxx.authorPazos, Yolanda|en_UK
local.rioxx.authorTorres Palenzuela, Jesus M|en_UK
local.rioxx.project776348|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2024-09-27en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2024-09-27|en_UK
local.rioxx.filenameremotesensing-16-00298-v2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2072-4292en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
remotesensing-16-00298-v2.pdfFulltext - Published Version3.08 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.