Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/36176
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPirbasti, Mehran Aen_UK
dc.contributor.authorAkbari, Vahiden_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.contributor.authorMaharaj, Savitrien_UK
dc.contributor.authorMarino, Armandoen_UK
dc.date.accessioned2024-08-22T00:01:24Z-
dc.date.available2024-08-22T00:01:24Z-
dc.date.issued2024-07-11en_UK
dc.identifier.urihttp://hdl.handle.net/1893/36176-
dc.description.abstractWater hyacinth (WH) is a notorious invasive species that significantly threatens ecosystems worldwide. Despite WH's well-documented threats and effects, its spatial distribution is not yet fully understood, especially in complex environments such as wetland systems. This knowledge gap is primarily due to the lack of accurate techniques with high spatial resolution and reliable in situ field data for quantification and monitoring. To address this research gap, we conducted a study to map the spatiotemporal distribution of invasive WH in Anzali International Wetland, Iran, using Sentinel-2 Multispectral Instrument 2022 data. Specifically, our study aimed to identify multispectral remote sensing variables and in situ field data using machine learning (ML) methods to detect and map WH growth cycles. In the first phase of our study, we compared three ML models for detecting WH and discriminating from other classes. Our results demonstrate that ML algorithms can detect WH accurately. In the second phase, we used four images dominated by four growth stages: early, mid, high, and decaying stages to train our ML classifier. We used the random forest algorithm for training our training samples achieving an overall classification accuracy of over 98%. These findings were further supported by statistical analysis, such as F1 (above 96%) and intersection over union (above 92%), indicating the high-performance quality of the used algorithm. Our study provides valuable insights into using ML algorithms for mapping WH growth cycles, which can significantly contribute to effectively managing and monitoring invasive species worldwide.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationPirbasti MA, Akbari V, Bhowmik D, Maharaj S & Marino A (2024) Detection and Mapping of Water Hyacinth Growth Cycle in Anzali International Wetland using Sentinel-2 Time Series. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</i>, 17, pp. 13346 - 13357. https://doi.org/10.1109/jstars.2024.3427002en_UK
dc.rights© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.titleDetection and Mapping of Water Hyacinth Growth Cycle in Anzali International Wetland using Sentinel-2 Time Seriesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/jstars.2024.3427002en_UK
dc.citation.jtitleIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_UK
dc.citation.issn2151-1535en_UK
dc.citation.issn1939-1404en_UK
dc.citation.volume17en_UK
dc.citation.spage13346en_UK
dc.citation.epage13357en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailvahid.akbari@stir.ac.uken_UK
dc.citation.date11/07/2024en_UK
dc.contributor.affiliationUniversity College Dublin (UCD)en_UK
dc.contributor.affiliationComputing Science and Mathematics - Divisionen_UK
dc.contributor.affiliationNewcastle Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.scopusid2-s2.0-85198341859en_UK
dc.identifier.wtid2031703en_UK
dc.contributor.orcid0000-0002-9621-8180en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.contributor.orcid0000-0002-0674-6044en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2024-07-11en_UK
dcterms.dateAccepted2024-07-11en_UK
dc.date.filedepositdate2024-08-13en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorPirbasti, Mehran A|en_UK
local.rioxx.authorAkbari, Vahid|0000-0002-9621-8180en_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.authorMaharaj, Savitri|0000-0002-0674-6044en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2024-08-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2024-08-13|en_UK
local.rioxx.filenameDetection_and_Mapping_of_Water_Hyacinth_Growth_Cycle_in_Anzali_International_Wetland_Using_Sentinel-2_Time_Series.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2151-1535en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Detection_and_Mapping_of_Water_Hyacinth_Growth_Cycle_in_Anzali_International_Wetland_Using_Sentinel-2_Time_Series.pdfFulltext - Published Version5.52 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.